
BGP Communities 101
Gert Döring, SpaceNet AG

DENOG 10, 21./22. November 2018

 who?

 what?

 why?

 how?

BGP Communities

(I‘ll spare you the SpaceNet marketing slides)

 32 bit numbers that can be
„attached“ to a prefix in BGP

 usually written in 16:16 bit form

 to avoid clashes, upper 16 bit
value usually = AS number

 5539:nnn = „this is relevant in
context of AS5539“

 very few numbers have built-in
significance (NO_EXPORT)

What are BGP Communities?

 used as „BGP remote control“

 router A tags prefix
 „set community XX“

 BGP transports prefix plus
community attributes

 decision at router B
 „if (community = YY)
 then <do something>“

 announce, prepend, alter
attributes (med, next-hop) …

first impressions…

do I really need this?

 No

 Most things you would do with communities
can be done in other ways, like

 manually configuring lots of routers for simple changes

 using your fancy puppet/salt automatization layer to auto-
reconfigure half your network if you add a new customer

 spending lots of hours on config, research, or tool writing

 strictly speaking, you do not need BGP communities

 … but they are a very nice way to get things done

do I really need this?

 No

 Most things you would do with communities
can be done in other ways, like

 manually configuring lots of routers for simple changes

 using your fancy puppet/salt automatization layer to auto-
reconfigure half your network if you add a new customer

 spending lots of hours on config, research, or tool writing

 strictly speaking, you do not need BGP communities

 … but they are a very nice way to get things done

 AS8481 is customer of AS5539

 AS8481 is also customer of AS5404,
who peers with AS5539

 AS5539 has very strict export prefix
filters towards AS2914

 prefix announced to AS2914 with
correct AS-path „5539 8481“

Example 1: prefix leaking

ip prefix-list out2914 permit 193.31.7.0/24

route-map to-2914 permit 10
 match ip prefix-list out2914
route-map to-2914 deny 99

 AS8481 is customer of AS5539

 AS8481 is also customer of AS5404,
who peers with AS5539

 AS5539 has very strict export prefix
filters towards AS2914

 what if 8481-5539 link fails?

 prefix filters will leak peer routes to
upstream!

 could be fixed, of course, by adding
strict AS-path filters...
 do not forget prepends

 update for each new customer!

Example 1: prefix leaking

ip prefix-list out2914 permit 193.31.7.0/24

route-map to-2914 permit 10
 match ip prefix-list out2914
route-map to-2914 deny 99

Example 1: with BGP communities

ip community-list standard CUST permit 5539:500

route-map to-2914 permit 10
 match community CUST
route-map to-2914 deny 99

ip prefix-list in8481 permit 193.31.7.0/24

route-map from-8481 permit 10
 match ip prefix-list in8481
 set community 5539:500
route-map from-8481 deny 99

 all prefixes accepted into AS5539
get tagged with a community
value:

 5539:500 = customer

 5539:100 = peering (decix)

 5539:250 = upstream (NTT)

 on export, the „customer“
community must be present

Example 1: with BGP communities

ip community-list standard CUST permit 5539:500

route-map to-2914 permit 10
 match community CUST
route-map to-2914 deny 99

route-map decix-peer permit 10
 match ip prefix-list nothing-bad
 set community 5539:100
route-map decix-peer deny 99

 all prefixes accepted into AS5539
get tagged with a community
value:

 5539:500 = customer

 5539:100 = peering (decix)

 5539:250 = upstream (NTT)

 on export, the „customer“
community must be present

 if a prefix has no „this is my
customer“ community, it will
never leak(!)

 fails safely



 Fine grained export control

 do not export to AS 2914

 prepend 3x 5539 towards all peers @DECIX

 …

 Tag prefix origin – where did your network learn this prefix?

 5539:100 route learned from peering @DECIX Frankfurt

 5539:250 route learned from upstream AS2914

 …

 BGP-based black holing (DDoS protection)

 5539:3000 „please null-route traffic to this IP address“

 …

Nice! More of this!

 BGP customers sometimes need
finegrained control on route export

 „For DECIX traffic, I prefer to not use
AS5539“

 look up „prepend to DECIX“ value in
5539‘s community documentation

 tag announcements with 5539:1103

 3x AS prepend to DECIX!

 ingress at AS8481: match on
5539:100 aka „route from DECIX“
and prepend (not shown here)

Fine-grained export control

ip prefix-list in8481 permit 193.31.7.0/24

route-map from-8481 permit 10
 match ip prefix-list in8481
 set community 5539:500 additive
route-map from-8481 deny 99

ip community-list standard D3x permit 5539:1103
…
route-map decix-out permit 30
 match community D3x
 set as-path prepend 5539 5539 5539
 …

route-map space-out permit 10
 match ip prefix-list mynets
 set community 5539:1103

 DECIX FRA: 900+ peers

 reach them all in one go via DECIX
route server

 announce to „only a subset“ via
well-defined communities*

 0:5404 – not to AS 5404

 6695:680 – only to AS 680

 what about peers with 32bit AS
numbers??

Fine-grained export control

* https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities

route-map space-out permit 10
 match ip prefix-list mynets
 set community 6695:680 6695:513 0:6695

 16:16 form with „AS#:xx“ does not work with 32bit AS#s

 it does not even work well for all 16bit cases (0:5404)

 RFC4360 specified „pfx:16:32“ „extended communities“

 complicated and still not large enough

 RFC8092, RFC8195 specify „large community“ standard

 96 bit „32:32:32“ format with no special semantics

 use like: 6695:<what>:<peer_AS> with full 32bit AS support

 the underlying concepts are the same:

 something sets the community („glues the number to the prefix“)
 something else can look at the number, and possibly do things

 more details: http://largebgpcommunities.net/examples/

32bit is never enough

Fine-grained import control

route-map backup-out permit 10
 match ip prefix-list mynets
 set community 5539:3070

route-policy customer8481-in
 set community (5539:500) additive
 if community matches-any (5539:3070) then
 set local-preference 70
 else
 set local-preference 500
 endif

 control local preference inside
AS5539

 default: 500

 5539:3070 -> local-pref 70

 5539:3130 -> local-pref 130

 control black holing

 5539:3000 -> blackhole

 5539:3001 -> blackhole
remotely

 (not shown here)

 Effectively there is no „gold standard“, every AS re-invents

 Keep numbers easy for humans to „understand“

 5539:1xx = peering (:100 = decix, :120 = INXS, :170 = ECIX, …)
 5539:2yy = upstream
 5539:500 = customer (-> „local pref 500“)

 5539:1xxz = „do something with peering xx“ (prepend, no-announce)
 5539:2yyz = „do something with upstream yy“ (prepend, …)
 z = 0 / 1 / 3 -> no announce, prepend 1x, prepend 3x

 clearly document ranges and structure!

 use distinct ranges for „customers can set these“ (5539:aaaa)
and „only your network can set these“ (5539:bbb)

Numbering Scheme?

 why use distinct number ranges?

 correctness of your BGP prefix announcements depends on
correct communities set on prefix

 what happens if someone sends you the „I am your
customer“ community (5539:500) at a peering point?

 Answer: you re-announce this prefix to all your other peers
and upstreams – route leak again!

 Easy fix: reset (override) all community values on import

 More flexible fix: selectively remove (+set) all values
that must not be controlled by remote end

Community Scrubbing

! inverted logic: “deny” = “do not delete” = “keep”. “permit” = “do delete”
!
ip community-list 100 deny 5539:[0-9][0-9][0-9][0-9]$! keep 5539:<4-digit>
ip community-list 100 permit 5539:.* ! remove all other 5539:*
ip community-list 100 deny .* ! keep everything else
!
ip prefix-list customer8481 permit 193.31.7.0/24
!
ip as-path access-list 72 permit ^(8481_)+$
!
route-map customer8481-in permit 10
 match ip address prefix-list customer8481
 match as-path 72
 set comm-list 100 delete
 set community 5539:500 additive
!
route-map customer8481-in deny 11

Community Scrubbing: IOS

prefix-set customer8481
 193.31.7.0/24
end-set
!
as-path-set ASP-customer8481
 ios-regex '^(8481_)+$‘
end-set
!
route-policy customer8481-in
 if not (destination in customer8481 and as-path in ASP-customer8481) then
 drop
 endif
!
! scrubbing: delete non-4-digit 5539:*, leave rest alone
 delete community in (5539:[0..999], 5539:[10000..65535])
 set community (5539:500) additive
end-policy

Community Scrubbing: IOS XR

Example: IOS (customer in)

Example: IOS XR (decix out)

 http://largebgpcommunities.net/examples/ (config examples)

 https://tools.ietf.org/html/rfc8092

 https://tools.ietf.org/html/rfc8195 (inspirations!!)

 https://www.de-cix.net/de/resources/route-server-guides/operational-
bgp-communities

 http://www.space.net/static/bgp_communities.html (AS5539)

 http://www.us.ntt.net/support/policy/routing.cfm (AS2914)

 https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars

 gert@space.net – questions welcome

References

http://largebgpcommunities.net/examples/
http://largebgpcommunities.net/examples/
https://tools.ietf.org/html/rfc8092
https://tools.ietf.org/html/rfc8092
https://tools.ietf.org/html/rfc8195
https://tools.ietf.org/html/rfc8195
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
https://www.de-cix.net/de/resources/route-server-guides/operational-bgp-communities
http://www.space.net/static/bgp_communities.html
http://www.space.net/static/bgp_communities.html
http://www.us.ntt.net/support/policy/routing.cfm
http://www.us.ntt.net/support/policy/routing.cfm
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
https://www.de-cix.net/en/about-de-cix/academy/videos-and-webinars
mailto:gert@space.net

