
Source Routing on the Edge
Scale, Reliability and Programmability for EXARINGs Internet Peering

Agenda

2

1. Who am I
2. State of Packet Forwarding
3. Requirements of modern Packet Forwarding
4. Solution

a. Data Plane
b. Control Plane
c. Issues

5. Questions

Who am I?

3

➔ Oliver Herms aka takt

➔ Senior Network Engineer @ EXARING AG

➔ Friend of robustness, reliability, velocity

➔ Network Automation Enthusiast

➔ Golang and gRPC fanboy

State of Packet Forwarding

State of Packet Forwarding

core01.fra01

core02.fra01

ISP A

core01.lej01

FRA
EDGE

LEJ
EDGE

ISP B

Dest. Next-Hop Weight

Any core01.fra01 -

Any core02.fra01 -

core01.lej01

IXP

100G
10G20G

Dest. Next-Hop Priority Weight

ISP A ISP A 1000 100%

ISP A IXP 500 0%

ISP A core01.lej01 100 0%

Limitations of current state (1)

➔ Packets to an ISP follow a single shortest path or a number of equal paths

◆ All active links get the same amount of traffic

◆ 10G + 100G = 20G usable capacity

◆ What is equal can be tuned administratively

Limitations of current state (2)

Traffic Engineering can make use of non-shortest paths

➔ Manual tweaking of Route attributes

◆ Dangerous: Mistakes can cause outages

➔ Only on a per Prefix basis (IP Ranges, 256-2M addresses)

➔ Requires changes in Router configs

◆ We fully generate them. But we review them manually.

Limitations of current state (3)

All IP Routes must be installed into Routers

➔ Memory is limited

➔ Expensive licenses required for 100k+ Routes

➔ Limits future growth with current platform

➔ Stops us from using even cheaper Routers

Requirements

Requirements

core01.fra01

core02.fra01

ISP A

core01.lej01

FRA
EDGE/STO

LEJ
EDGE/STO

ISP B

core01.lej01

IXP (e.g.
DECIX)

100G

10G20G

Requirements

➔ Make non-equal speed links usable

➔ Make non-equal cost links usable

➔ Automatically maximize utilization of cheapest links

➔ Automatically move excess traffic to next cheapest link

➔ Allow to take link quality into account in routing decision

➔ React to changes quickly and repair any situation automatically, if possible

Nice to haves

➔ Do not change Router configs

➔ Support arbitrary amount of Routes

➔ Allow per IP traffic engineering

Solution

Solution (1)

➔ Let Vendor Routers forward traffic but not route it

◆ Too inflexible to meet our needs

➔ Source Routing: Let the source of traffic decide which path a packet takes

➔ Servers send labeled packets

➔ Packets get encapsulated into tunnels to Egress Routers

Solution (2)

➔ Labeled packet arrives at Router

◆ Static forwarding

◆ Label indicates next-hop

◆ Ignoring IP Routing Table

Advantages

➔ Allows fine granular control of link utilization

◆ will save € in OPEX

➔ No need for IP Routing on Routers anymore

◆ will save € in CAPEX)

Data Plane

Architecture Overview (Data Plane)

core01.fra01

core01.lej01

ISP A
192.0.2.100

core02.lej01

LEJ
EDGE

Label 1000: POP
NH 192.0.2.100

ISP B
192.0.2.101
192.0.2.102

Label 2000: POP
NH 192.0.2.101

Label 2001: POP
NH 192.0.2.102

Unidirectional Tunnels10G Peering

Dest. Label Tunnel Weight

ISP A 1000 core01.fra01 10G

ISP B 2000 core01.lej01 10G

ISP B 2001 core02.lej01 20G

10G Peering

20G Peering

MPLS Label Switching Paths

oherms@core02.fra01> ...nces CLOSEDNET protocols mpls static-label-switched-path coffee_62_69_146_95
transit 1001899 {
 description rdev=AS201701,rif=ECIX-FRA,ndev=ECIX-FRA,nif=ECIX-FRA-001,nrole=IXP;
 next-hop 62.69.146.95;
 pop;
}

➔ Multiprotocol Label Switching (MPLS)
➔ Label Switching Path (LSP) allows choosing Next-Hops per Label

Getting to the Peering Router (PR)

➔ Full MPLS deployment on internal network

◆ IS-IS SR (Segment Routing)

◆ LDP (Label Distribution Protocol)

◆ RSVP (Resource Reservation Protocol)

➔ MPLS in a Tunnel

◆ MPLS over GRE/IP

◆ MPLS over UDP/IP

Packet Stack leaving Machines

Tunnel IP
Header

UDP Header
Port 6635

MPLS Label
(Next Hop)

IP Header of
Payload

TCP/UDP
Header

Data...

Machines (Linux)

1. Create Foo Over UDP (FOU) encapsulated SIT tunnel per Router

2. Add MPLS encapsulated tunnel interface routes

modprobe fou
ip fou add port 6635 ipproto 4
ip link add name cn-cr01fra01-0 type sit remote 192.168.1.1 local
192.168.1.2 ttl 64 encap fou encap-sport 6635 encap-dport 6635

modprobe mpls_iptunnel
modprobe mpls_gso
ip route add 192.0.2.0/24 encap mpls 123 dev cn-cr01fra01-0

Router Tunnel Endpoints

Decap MPLS-in-UDP Firewall Filter

oherms@core02.fra01> show configuration firewall family inet filter
CN_MATROSCHKA
term MPLS-IN-UDP {
 from {
 destination-prefix-list {
 CN_MATROSCHKA_CORE02_FRA01_v4;
 }
 protocol udp;
 destination-port 6635;
 }
 then {
 decapsulate mpls-in-udp;
 }
}
...

Control Plane

Requirements (1)

➔ Calculate routing view per Region

◆ All machines in a region should have identical routing tables

Requirements (2)

➔ Reliable

◆ Must survive machine failure

◆ Must support In Service Software Update (ISSU, no it’s not a trap)

Requirements (3)

➔ Scalable

◆ Must support 100+ clients per Region

◆ Growing Internet Routing Tables

◆ Growing number of Peerings

Requirements (4)

➔ Programmable

◆ Allow administrative changes to default routing decisions

Getting Routes from Routers
Make BMP Data usable

Getting Routes from Routers (1)

➔ BGP Monitoring Protocol (BMP, RFC 7854)

◆ Sends all received routes to a monitoring station

◆ Notifies monitoring station about peer up/down events

◆ Either pre-policy or post-policy

● We use post-policy

Getting Routes from Routers (2)

➔ BIO-Routing Route Information Service (RIS)

◆ github.com/bio-routing/bio-rd/cmd/ris

◆ Receives BMP messages

◆ Tracks per Router/VRF/Peer Adj-RIB-In State

◆ Exposes state via gRPC

Getting Routes from Routers (3)

R1

RIS Process

BMP Server

VRF A

Peer X

Peer Y

inet.0
inet6.0

inet.0
inet6.0

Adj. RIB-In

inet.0

Loc-RIB

...

R1

...

GRPC Server

GRPC Services: (bio.ris, per
Router and VRF)
● Longest Prefix Match
● DumpRIB
● ObserveRIB
● Get
● GetLonger

BMP

Getting Routes from RIS into SDN Controller

➔ Route Information Service (RIS) allows streaming routing information per
Router/VRF

➔ Uses gRPC Streaming RPC

◆ Call ObserveRIB()

◆ Reads an (endless) stream of updates

◆ RIS sends a state dump initially + updates as they come in via BMP

SDN Controller
Decision Making

Route Controller / SDN Controller (1)

➔ Written in Go
➔ Discovers MPLS Label to Next Hop mapping from IPAM
➔ Calculates shortest paths based on BGP data

◆ Per Region
◆ Per Prefix
◆ BGP Attributes:

● Local Pref
● Autonomous System Path
● MED
● Origin
● Internal cost to Next-Hop

Route Controller / SDN Controller (2)

➔ Takes Traffic Engineering Input

◆ Allows overriding BGP path information

◆ To be done automatically

◆ Manual action for now

Route Controller / SDN Controller (3)

➔ Traffic Engineering Controller is under development

◆ Multi-Instance

◆ Single leader

◆ Takes input from

● OpenConfig Streaming Telemetry

● Netflow Collector (tflow2)

● RIS

Route Controller / SDN Controller (4)

➔ Streams Routing Tables to Machines

➔ gRPC Streaming RPC

➔ New clients receive a full dump

➔ Incremental updates sent as route decisions change

Route Attributes:
● Prefix
● Exit Routers Tunnel

IP-Address
● MPLS Label
● Weight

Route Agent
Getting Routes into Machines

Route Agent (1)

➔ Written in Go

➔ Makes sure necessary Kernel Modules are loaded

◆ fou

◆ mpls_iptunnel

◆ mpls_gso

Route Agent (2)

➔ Configures Tunnels to Routers

◆ Routers are being discovered from Datacenter Inventory Service

➔ Maintains a Machines Routing Table

◆ Receives Updates from Route Controller

◆ Uses Netlink to Replace/Delete Routes in the Linux Kernel

Architecture Overview (Control Plane)

core01.fra01

core02.fra01

core01.lej01

ris1.fra

ris2.fra

ris3.fra

core02.lej01

ris1.lej

ris2.lej

ris3.lej

rc1.fra

rc2.fra

rc3.fra

BMP

rc.lej

rc2.lej

rc3.lej

Streaming RPC

CN RT route-agent

Netlink

CN RT route-agent

Netlink

Edge/STO FRA

Edge/STO LEJ

Streaming RPC

BGP Paths per
Prefix/VRF/Router

RIB per
VRF/Router

Selected paths per
prefix

Issues encountered

Go/Netlink issue

➔ github.com/vishvananda/netlink

➔ Unable to write Multipath Routes with MPLS Encap into the Kernel

➔ Encap attribute attached to the wrong object

➔ Pull Request waiting for merge

Vendor BMP Issue

➔ Router sends incomplete BGP OPEN messages in BMP Peer Up
Notifications

➔ Only when the peer Router sends exactly 4 Byte-ASN and AddPath
capabilities

➔ Only when using “allow-from” instead of “neighbor” statement

➔ BGP OPEN optional parameters missing

Vendor CLI Output Issues

Showing static LSPs briefly as XML output results in invalid XML
➔ Only with 100+ LSPs configured
➔ JSON output causes segfault

Linux Issues

➔ TCP over MPLS Encap Route unusably slow (~70kbyte/s)

◆ On a route that made 1,5 Gbps with a non MPLS Route

➔ Interface TX drops

➔ Random chunks of segments missing

➔ Long story short: modprobe mpls_gso

State of Rollout

➔ Currently running on internal testing Machines
➔ Pending deployment of dedicated SDN Controller Machines
➔ Traffic Engineering Controller pending

Thank You!
Questions?

