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Who am I?
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➔ Oliver Herms aka takt

➔ Senior Network Engineer @ EXARING AG

➔ Friend of robustness, reliability, velocity

➔ Network Automation Enthusiast

➔ Golang and gRPC fanboy



State of Packet Forwarding



State of Packet Forwarding
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Limitations of current state (1)

➔ Packets to an ISP follow a single shortest path or a number of equal paths

◆ All active links get the same amount of traffic

◆ 10G + 100G = 20G usable capacity

◆ What is equal can be tuned administratively



Limitations of current state (2)

Traffic Engineering can make use of non-shortest paths

➔ Manual tweaking of Route attributes

◆ Dangerous: Mistakes can cause outages

➔ Only on a per Prefix basis (IP Ranges, 256-2M addresses)

➔ Requires changes in Router configs

◆ We fully generate them. But we review them manually.



Limitations of current state (3)

All IP Routes must be installed into Routers

➔ Memory is limited

➔ Expensive licenses required for 100k+ Routes

➔ Limits future growth with current platform

➔ Stops us from using even cheaper Routers



Requirements
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Requirements

➔ Make non-equal speed links usable

➔ Make non-equal cost links usable

➔ Automatically maximize utilization of cheapest links

➔ Automatically move excess traffic to next cheapest link

➔ Allow to take link quality into account in routing decision

➔ React to changes quickly and repair any situation automatically, if possible



Nice to haves

➔ Do not change Router configs

➔ Support arbitrary amount of Routes

➔ Allow per IP traffic engineering



Solution



Solution (1)

➔ Let Vendor Routers forward traffic but not route it

◆ Too inflexible to meet our needs

➔ Source Routing: Let the source of traffic decide which path a packet takes

➔ Servers send labeled packets

➔ Packets get encapsulated into tunnels to Egress Routers



Solution (2)

➔ Labeled packet arrives at Router

◆ Static forwarding

◆ Label indicates next-hop

◆ Ignoring IP Routing Table



Advantages

➔ Allows fine granular control of link utilization 

◆ will save € in OPEX

➔ No need for IP Routing on Routers anymore 

◆ will save € in CAPEX)



Data Plane



Architecture Overview (Data Plane)
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MPLS Label Switching Paths

oherms@core02.fra01> ...nces CLOSEDNET protocols mpls static-label-switched-path coffee_62_69_146_95              
transit 1001899 {
    description rdev=AS201701,rif=ECIX-FRA,ndev=ECIX-FRA,nif=ECIX-FRA-001,nrole=IXP;
    next-hop 62.69.146.95;
    pop;
}

➔ Multiprotocol Label Switching (MPLS)
➔ Label Switching Path (LSP) allows choosing Next-Hops per Label



Getting to the Peering Router (PR)

➔ Full MPLS deployment on internal network

◆ IS-IS SR (Segment Routing)

◆ LDP (Label Distribution Protocol)

◆ RSVP (Resource Reservation Protocol)

➔ MPLS in a Tunnel

◆ MPLS over GRE/IP

◆ MPLS over UDP/IP



Packet Stack leaving Machines
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Machines (Linux)

1. Create Foo Over UDP (FOU) encapsulated SIT tunnel per Router

2. Add MPLS encapsulated tunnel interface routes

# modprobe fou
# ip fou add port 6635 ipproto 4
# ip link add name cn-cr01fra01-0 type sit remote 192.168.1.1 local        
192.168.1.2 ttl 64 encap fou encap-sport 6635 encap-dport 6635

# modprobe mpls_iptunnel
# modprobe mpls_gso
# ip route add 192.0.2.0/24 encap mpls 123 dev cn-cr01fra01-0



Router Tunnel Endpoints

Decap MPLS-in-UDP Firewall Filter

oherms@core02.fra01> show configuration firewall family inet filter 
CN_MATROSCHKA       
term MPLS-IN-UDP {
    from {
        destination-prefix-list {
            CN_MATROSCHKA_CORE02_FRA01_v4;
        }
        protocol udp;
        destination-port 6635;
    }
    then {
        decapsulate mpls-in-udp;
    }
}
...



Control Plane



Requirements (1)

➔ Calculate routing view per Region

◆ All machines in a region should have identical routing tables



Requirements (2)

➔ Reliable

◆ Must survive machine failure

◆ Must support In Service Software Update (ISSU, no it’s not a trap)



Requirements (3)

➔ Scalable

◆ Must support 100+ clients per Region

◆ Growing Internet Routing Tables

◆ Growing number of Peerings



Requirements (4)

➔ Programmable

◆ Allow administrative changes to default routing decisions



Getting Routes from Routers
Make BMP Data usable



Getting Routes from Routers (1)

➔ BGP Monitoring Protocol (BMP, RFC 7854)

◆ Sends all received routes to a monitoring station

◆ Notifies monitoring station about peer up/down events

◆ Either pre-policy or post-policy

● We use post-policy



Getting Routes from Routers (2)

➔ BIO-Routing Route Information Service (RIS)

◆ github.com/bio-routing/bio-rd/cmd/ris

◆ Receives BMP messages

◆ Tracks per Router/VRF/Peer Adj-RIB-In State

◆ Exposes state via gRPC



Getting Routes from Routers (3)
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Getting Routes from RIS into SDN Controller

➔ Route Information Service (RIS) allows streaming routing information per 
Router/VRF

➔ Uses gRPC Streaming RPC

◆ Call ObserveRIB()

◆ Reads an (endless) stream of updates

◆ RIS sends a state dump initially + updates as they come in via BMP 



SDN Controller
Decision Making



Route Controller / SDN Controller (1)

➔ Written in Go
➔ Discovers MPLS Label to Next Hop mapping from IPAM
➔ Calculates shortest paths based on BGP data

◆ Per Region
◆ Per Prefix
◆ BGP Attributes:

● Local Pref
● Autonomous System Path
● MED
● Origin
● Internal cost to Next-Hop



Route Controller / SDN Controller (2)

➔ Takes Traffic Engineering Input

◆ Allows overriding BGP path information

◆ To be done automatically

◆ Manual action for now



Route Controller / SDN Controller (3)

➔ Traffic Engineering Controller is under development

◆ Multi-Instance

◆ Single leader

◆ Takes input from

● OpenConfig Streaming Telemetry

● Netflow Collector (tflow2)

● RIS



Route Controller / SDN Controller (4)

➔ Streams Routing Tables to Machines

➔ gRPC Streaming RPC

➔ New clients receive a full dump

➔ Incremental updates sent as route decisions change

Route Attributes:
● Prefix
● Exit Routers Tunnel 

IP-Address
● MPLS Label
● Weight



Route Agent
Getting Routes into Machines



Route Agent (1)

➔ Written in Go

➔ Makes sure necessary Kernel Modules are loaded

◆ fou

◆ mpls_iptunnel

◆ mpls_gso



Route Agent (2)

➔ Configures Tunnels to Routers

◆ Routers are being discovered from Datacenter Inventory Service

➔ Maintains a Machines Routing Table

◆ Receives Updates from Route Controller

◆ Uses Netlink to Replace/Delete Routes in the Linux Kernel



Architecture Overview (Control Plane)
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Issues encountered



Go/Netlink issue

➔ github.com/vishvananda/netlink

➔ Unable to write Multipath Routes with MPLS Encap into the Kernel

➔ Encap attribute attached to the wrong object

➔ Pull Request waiting for merge



Vendor BMP Issue

➔ Router sends incomplete BGP OPEN messages in BMP Peer Up 
Notifications

➔ Only when the peer Router sends exactly 4 Byte-ASN and AddPath 
capabilities

➔ Only when using “allow-from” instead of “neighbor” statement

➔ BGP OPEN optional parameters missing



Vendor CLI Output Issues

Showing static LSPs briefly as XML output results in invalid XML
➔ Only with 100+ LSPs configured
➔ JSON output causes segfault 



Linux Issues

➔ TCP over MPLS Encap Route unusably slow (~70kbyte/s)

◆ On a route that made 1,5 Gbps with a non MPLS Route

➔ Interface TX drops

➔ Random chunks of segments missing

➔ Long story short: modprobe mpls_gso



State of Rollout

➔ Currently running on internal testing Machines
➔ Pending deployment of dedicated SDN Controller Machines
➔ Traffic Engineering Controller pending



Thank You!
Questions?


