
Costas Drogos <costasd@kentik.com>

Scaling to support thousands of BGP
peerings in a SaaS environment

Contents
● BGP at Kentik
● Scaling Phases

○ 1-2 nodes (active/backup)
○ 4-10 nodes with ‘bgp-vips’ and policy routing
○ 10-16 nodes with ‘vipcontrol’ and policy routing
○ 16+ nodes with LVS-DR

INGEST &
FUSION kFlow

kFlow

STORAGE & QUERY CLIENTS

STREAMING &
AGGREGATION ACTION TRIGGERS

SOURCES

DATA

DATA

Kentik Platform

INGEST &
FUSION kFlow

kFlow

STORAGE & QUERY CLIENTS

STREAMING &
AGGREGATION ACTION TRIGGERS

SOURCES

DATA

DATA

Kentik Platform

BGP at Kentik: functionality
● Kentik performs peerings with Customers

○ Preferably with every device sending flow and running BGP for routing
○ Passive iBGP route-reflector speaker

■ On servers running Debian GNU/Linux
○ BGP functionality is part of our contracted SLA - 99.99%

Just for filtering by BGP attributes in queries?

BGP at Kentik: functionality
● Kentik performs peerings with Customers

○ Preferably with every device sending flow and running BGP for routing
○ Passive iBGP route-reflector speaker

■ On servers running Debian GNU/Linux
○ BGP functionality is part of our contracted SLA - 99.99%

Just for filtering by BGP attributes in queries?

Alerting/Mitigations
● Prefix alerts
● RTBH
● Flowspec

Analytics
● RPKI
● Peering Analytics
● Ultimate Exit calculation
● Network discovery

The beginning
● Less than 200 peers, IPv4 only
● 2 nodes in Active/Backup mode

○ Kentik BGP software runs in both nodes
○ A floating IP handles the HA/failover part

■ With uCARP

● A script in /root sets everything up on boot via rc.local

Kentik grows
● Peerings don’t fit in one node anymore

○ more than 300 peers in a server
○ Memory and CPU intensive

● RTBH feature is released to customers
○ BGP peerings now play a more active role

● uCARP doesn’t scale well for 2+ nodes
○ Lots of corner cases, health checks

● Kentik’s internal fabric gets upgraded to 10G
○ But also supports OSPF & BGP now

● uCARP gets replaced by ‘bgp-vips’
○ Shell script talking to a spawned exaBGP
○ Floating BGP IP is now mounted on the loopback interface
○ Announced to Kentik’s BGP fabric with a different MED per node

Kentik grows

R1=$(((RANDOM % 10000) + 1))
STATE="down"
while true; do

 if [["$STATE" == "up"]]; then
 echo "announce route 208.76.14.223/32 next-hop self med" $R1
 fi
 if [["$STATE" == "down"]]; then
 echo "withdraw route 208.76.14.223/32 next-hop self med" $R1
 fi
 sleep 2
done

● Connections still land to a single node, but don’t fit there
● We have to offload connections to other nodes

○ So the ‘landing’ node has to act as a router of sorts
○ Enter policy routing, aka MARK and ip rule, ip route in the Linux world
○ How to mark them to achieve a balanced distribution?

■ Oldest trick in the book: wildcard masks

Kentik grows

iptables -A PREROUTING -t mangle -p tcp -s 0.0.0.1/0.1.1.1 --sport 179 -d 208.76.14.223/32 -j
MARK --set-mark 100
iptables -A PREROUTING -t mangle -p tcp -s 0.0.1.0/0.1.1.1 --sport 179 -d 208.76.14.223/32 -j
MARK --set-mark 101
...
ip route add 208.76.14.223/32 via 1.1.1.2 table bgp-even
ip route add 208.76.14.223/32 via 1.1.1.3 table bgp-odd
ip rule add pri 29000 fwmark 100 table bgp-even
ip rule add pri 29000 fwmark 101 table bgp-odd

BGP setup

Customer Device 1 Customer Device 2

BGP Node 04BGP Node 03BGP Node 02BGP Node 01

BGP Fabric

Issues
● Can’t find an ipv6 mask good enough for a uniform distribution

○ /32?
○ /48?
○ /64?
○ So IPv6 remains bound to 2 nodes (active/backup) for now :(

● Topology modification means full exaBGP restart

● We’ve passed 1300 peers
○ IPv6 doesn’t fit in one node anymore (yay!)

● Mask-based balancing not very optimal anymore
○ Lots of bigger device customers have devices in the same /24 or /26

● Various shortcomings with ‘bgp-vips’
○ Can’t modify MEDs without restarting the exabgp process
○ Need to support more complex health checks

But, not much time to design something from scratch, we grow fast!

Kentik grows more

So, we decide to improve the current setup
● We keep policy routing, routing tables, routing rules
● But we replace mask-based routing with hash-based routing

○ from MARK to HMARK
○ https://lwn.net/Articles/488663/

iptables -A PREROUTING -t mangle -d ${BGPVIP1} -j HMARK --hmark-offset 100 --hmark-tuple src
--hmark-mod 10 --hmark-rnd 0xdeadbeef

ip6tables -A PREROUTING -t mangle -d ${BGP6VIP1}/128 -j HMARK --hmark-offset 200
--hmark-tuple src --hmark-mod 10 --hmark-rnd 0xdeadbeef

Kentik grows more

https://lwn.net/Articles/488663/

● ...And we decide to replace ‘bgp-vips’ with ‘vipcontrol’
○ A real daemon in python communicating with a side-running exaBGP

○ Assigning random MEDs to configured IPs on startup
○ ...but also offering the ability to dynamically modify exaBGP’s state

 Accompanied with a new ‘viphealth’ daemon that is able to dynamically modify MEDs.

Kentik grows more

$ sudo vipcontrolctl list
...
DEBUG KEY: 208.76.14.223/32 VALUES: {'action': 'announce', 'med': 7854, 'details':
'Added by viphealth: 2019-07-19 18:35:26.414150'}
announce route 208.76.14.223/32 next-hop self med 7854
...

What if a node needs to be removed?

Customer Device 1 Customer Device 2

BGP Node 04BGP Node 03BGP Node 02BGP Node 01

BGP Fabric

A new design to replace policy routing

● IPv4 & IPv6 support
● Uniform Session distribution
● Horizontal scaling
● All the state to be persisted in our Puppet code tree
● Easier day-to-day operations: pooling, depooling, code deploys

○ 4000+ sessions, we can’t sustain flapping them all for HW maintenance or A/B testing
anymore

Kentik grows much more

LVS/DSR setup

Customer Device 1

BGP Node 02Realserver/BGP Node
01LB Node 02LB Node 01

BGP Fabric

● Bird instead of exaBGP
○ +BFD for quicker route failover

● Keepalived in LVS mode
○ With healthchecks for pooling/depooling realservers

● Connection sync with ipvs
○ LB node flapping
○ Realserver flapping

● Configuration set in Puppet+git

Under the hood

● Pros
○ Online configuration changes are possible
○ Everything is persisted in configuration management
○ Ability to drain/depool/pool servers with minimal impact
○ Total health check flexibility

● Cons
○ No more consistent hashing
○ Can’t scale out of one LAN due to arp
○ All BGP connections pass through a pair of LB nodes

LVS/DR setup

● Need to emulate thousands of BGP connections
○ Spotify’s https://github.com/spotify/super-smash-brogp

● Lots of tuning potential
○ IPVS

■ expire timeouts, sync frequency/threshold,msg_max_size etc
○ Keepalived + Bird

■ notify_up/notify_down, quorum_up/quorum_down, interface tracking etc
○ BFD

■ timers

Testing / Tuning

https://github.com/spotify/super-smash-brogp

Q&A
Thanks!

