mirror of
				https://gitlab.labs.nic.cz/labs/bird.git
				synced 2024-05-11 16:54:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1861 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1861 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	Filters: utility functions
 | |
|  *
 | |
|  *	Copyright 1998 Pavel Machek <pavel@ucw.cz>
 | |
|  *
 | |
|  *	Can be freely distributed and used under the terms of the GNU GPL.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: Filters
 | |
|  *
 | |
|  * You can find sources of the filter language in |filter/|
 | |
|  * directory. File |filter/config.Y| contains filter grammar and basically translates
 | |
|  * the source from user into a tree of &f_inst structures. These trees are
 | |
|  * later interpreted using code in |filter/filter.c|.
 | |
|  *
 | |
|  * A filter is represented by a tree of &f_inst structures, one structure per
 | |
|  * "instruction". Each &f_inst contains @code, @aux value which is
 | |
|  * usually the data type this instruction operates on and two generic
 | |
|  * arguments (@a1, @a2). Some instructions contain pointer(s) to other
 | |
|  * instructions in their (@a1, @a2) fields.
 | |
|  *
 | |
|  * Filters use a &f_val structure for their data. Each &f_val
 | |
|  * contains type and value (types are constants prefixed with %T_). Few
 | |
|  * of the types are special; %T_RETURN can be or-ed with a type to indicate
 | |
|  * that return from a function or from the whole filter should be
 | |
|  * forced. Important thing about &f_val's is that they may be copied
 | |
|  * with a simple |=|. That's fine for all currently defined types: strings
 | |
|  * are read-only (and therefore okay), paths are copied for each
 | |
|  * operation (okay too).
 | |
|  */
 | |
| 
 | |
| #undef LOCAL_DEBUG
 | |
| 
 | |
| #include "nest/bird.h"
 | |
| #include "lib/lists.h"
 | |
| #include "lib/resource.h"
 | |
| #include "lib/socket.h"
 | |
| #include "lib/string.h"
 | |
| #include "lib/unaligned.h"
 | |
| #include "lib/net.h"
 | |
| #include "lib/ip.h"
 | |
| #include "nest/route.h"
 | |
| #include "nest/protocol.h"
 | |
| #include "nest/iface.h"
 | |
| #include "nest/attrs.h"
 | |
| #include "conf/conf.h"
 | |
| #include "filter/filter.h"
 | |
| 
 | |
| #define P(a,b) ((a<<8) | b)
 | |
| 
 | |
| #define CMP_ERROR 999
 | |
| 
 | |
| void (*bt_assert_hook)(int result, struct f_inst *assert);
 | |
| 
 | |
| static struct adata *
 | |
| adata_empty(struct linpool *pool, int l)
 | |
| {
 | |
|   struct adata *res = lp_alloc(pool, sizeof(struct adata) + l);
 | |
|   res->length = l;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pm_format(struct f_path_mask *p, buffer *buf)
 | |
| {
 | |
|   buffer_puts(buf, "[= ");
 | |
| 
 | |
|   while (p)
 | |
|   {
 | |
|     switch(p->kind)
 | |
|     {
 | |
|     case PM_ASN:
 | |
|       buffer_print(buf, "%u ", p->val);
 | |
|       break;
 | |
| 
 | |
|     case PM_QUESTION:
 | |
|       buffer_puts(buf, "? ");
 | |
|       break;
 | |
| 
 | |
|     case PM_ASTERISK:
 | |
|       buffer_puts(buf, "* ");
 | |
|       break;
 | |
| 
 | |
|     case PM_ASN_RANGE:
 | |
|       buffer_print(buf, "%u..%u ", p->val, p->val2);
 | |
|       break;
 | |
| 
 | |
|     case PM_ASN_EXPR:
 | |
|       buffer_print(buf, "%u ", f_eval_asn((struct f_inst *) p->val));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     p = p->next;
 | |
|   }
 | |
| 
 | |
|   buffer_puts(buf, "=]");
 | |
| }
 | |
| 
 | |
| static inline int val_is_ip4(const struct f_val v)
 | |
| { return (v.type == T_IP) && ipa_is_ip4(v.val.ip); }
 | |
| 
 | |
| static inline int
 | |
| lcomm_cmp(lcomm v1, lcomm v2)
 | |
| {
 | |
|   if (v1.asn != v2.asn)
 | |
|     return (v1.asn > v2.asn) ? 1 : -1;
 | |
|   if (v1.ldp1 != v2.ldp1)
 | |
|     return (v1.ldp1 > v2.ldp1) ? 1 : -1;
 | |
|   if (v1.ldp2 != v2.ldp2)
 | |
|     return (v1.ldp2 > v2.ldp2) ? 1 : -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * val_compare - compare two values
 | |
|  * @v1: first value
 | |
|  * @v2: second value
 | |
|  *
 | |
|  * Compares two values and returns -1, 0, 1 on <, =, > or CMP_ERROR on
 | |
|  * error. Tree module relies on this giving consistent results so
 | |
|  * that it can be used for building balanced trees.
 | |
|  */
 | |
| int
 | |
| val_compare(struct f_val v1, struct f_val v2)
 | |
| {
 | |
|   if (v1.type != v2.type) {
 | |
|     if (v1.type == T_VOID)	/* Hack for else */
 | |
|       return -1;
 | |
|     if (v2.type == T_VOID)
 | |
|       return 1;
 | |
| 
 | |
|     /* IP->Quad implicit conversion */
 | |
|     if ((v1.type == T_QUAD) && val_is_ip4(v2))
 | |
|       return uint_cmp(v1.val.i, ipa_to_u32(v2.val.ip));
 | |
|     if (val_is_ip4(v1) && (v2.type == T_QUAD))
 | |
|       return uint_cmp(ipa_to_u32(v1.val.ip), v2.val.i);
 | |
| 
 | |
|     debug( "Types do not match in val_compare\n" );
 | |
|     return CMP_ERROR;
 | |
|   }
 | |
| 
 | |
|   switch (v1.type) {
 | |
|   case T_VOID:
 | |
|     return 0;
 | |
|   case T_ENUM:
 | |
|   case T_INT:
 | |
|   case T_BOOL:
 | |
|   case T_PAIR:
 | |
|   case T_QUAD:
 | |
|     return uint_cmp(v1.val.i, v2.val.i);
 | |
|   case T_EC:
 | |
|   case T_RD:
 | |
|     return u64_cmp(v1.val.ec, v2.val.ec);
 | |
|   case T_LC:
 | |
|     return lcomm_cmp(v1.val.lc, v2.val.lc);
 | |
|   case T_IP:
 | |
|     return ipa_compare(v1.val.ip, v2.val.ip);
 | |
|   case T_NET:
 | |
|     return net_compare(v1.val.net, v2.val.net);
 | |
|   case T_STRING:
 | |
|     return strcmp(v1.val.s, v2.val.s);
 | |
|   default:
 | |
|     return CMP_ERROR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int
 | |
| pm_same(struct f_path_mask *m1, struct f_path_mask *m2)
 | |
| {
 | |
|   while (m1 && m2)
 | |
|   {
 | |
|     if (m1->kind != m2->kind)
 | |
|       return 0;
 | |
| 
 | |
|     if (m1->kind == PM_ASN_EXPR)
 | |
|     {
 | |
|       if (!i_same((struct f_inst *) m1->val, (struct f_inst *) m2->val))
 | |
| 	return 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if ((m1->val != m2->val) || (m1->val2 != m2->val2))
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     m1 = m1->next;
 | |
|     m2 = m2->next;
 | |
|   }
 | |
| 
 | |
|   return !m1 && !m2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * val_same - compare two values
 | |
|  * @v1: first value
 | |
|  * @v2: second value
 | |
|  *
 | |
|  * Compares two values and returns 1 if they are same and 0 if not.
 | |
|  * Comparison of values of different types is valid and returns 0.
 | |
|  */
 | |
| int
 | |
| val_same(struct f_val v1, struct f_val v2)
 | |
| {
 | |
|   int rc;
 | |
| 
 | |
|   rc = val_compare(v1, v2);
 | |
|   if (rc != CMP_ERROR)
 | |
|     return !rc;
 | |
| 
 | |
|   if (v1.type != v2.type)
 | |
|     return 0;
 | |
| 
 | |
|   switch (v1.type) {
 | |
|   case T_PATH_MASK:
 | |
|     return pm_same(v1.val.path_mask, v2.val.path_mask);
 | |
|   case T_PATH:
 | |
|   case T_CLIST:
 | |
|   case T_ECLIST:
 | |
|   case T_LCLIST:
 | |
|     return adata_same(v1.val.ad, v2.val.ad);
 | |
|   case T_SET:
 | |
|     return same_tree(v1.val.t, v2.val.t);
 | |
|   case T_PREFIX_SET:
 | |
|     return trie_same(v1.val.ti, v2.val.ti);
 | |
|   default:
 | |
|     bug("Invalid type in val_same(): %x", v1.type);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int
 | |
| clist_set_type(struct f_tree *set, struct f_val *v)
 | |
| {
 | |
|   switch (set->from.type)
 | |
|   {
 | |
|   case T_PAIR:
 | |
|     v->type = T_PAIR;
 | |
|     return 1;
 | |
| 
 | |
|   case T_QUAD:
 | |
|     v->type = T_QUAD;
 | |
|     return 1;
 | |
| 
 | |
|   case T_IP:
 | |
|     if (val_is_ip4(set->from) && val_is_ip4(set->to))
 | |
|     {
 | |
|       v->type = T_QUAD;
 | |
|       return 1;
 | |
|     }
 | |
|     /* Fall through */
 | |
|   default:
 | |
|     v->type = T_VOID;
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| eclist_set_type(struct f_tree *set)
 | |
| { return set->from.type == T_EC; }
 | |
| 
 | |
| static inline int
 | |
| lclist_set_type(struct f_tree *set)
 | |
| { return set->from.type == T_LC; }
 | |
| 
 | |
| static int
 | |
| clist_match_set(struct adata *clist, struct f_tree *set)
 | |
| {
 | |
|   if (!clist)
 | |
|     return 0;
 | |
| 
 | |
|   struct f_val v;
 | |
|   if (!clist_set_type(set, &v))
 | |
|     return CMP_ERROR;
 | |
| 
 | |
|   u32 *l = (u32 *) clist->data;
 | |
|   u32 *end = l + clist->length/4;
 | |
| 
 | |
|   while (l < end) {
 | |
|     v.val.i = *l++;
 | |
|     if (find_tree(set, v))
 | |
|       return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eclist_match_set(struct adata *list, struct f_tree *set)
 | |
| {
 | |
|   if (!list)
 | |
|     return 0;
 | |
| 
 | |
|   if (!eclist_set_type(set))
 | |
|     return CMP_ERROR;
 | |
| 
 | |
|   struct f_val v;
 | |
|   u32 *l = int_set_get_data(list);
 | |
|   int len = int_set_get_size(list);
 | |
|   int i;
 | |
| 
 | |
|   v.type = T_EC;
 | |
|   for (i = 0; i < len; i += 2) {
 | |
|     v.val.ec = ec_get(l, i);
 | |
|     if (find_tree(set, v))
 | |
|       return 1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| lclist_match_set(struct adata *list, struct f_tree *set)
 | |
| {
 | |
|   if (!list)
 | |
|     return 0;
 | |
| 
 | |
|   if (!lclist_set_type(set))
 | |
|     return CMP_ERROR;
 | |
| 
 | |
|   struct f_val v;
 | |
|   u32 *l = int_set_get_data(list);
 | |
|   int len = int_set_get_size(list);
 | |
|   int i;
 | |
| 
 | |
|   v.type = T_LC;
 | |
|   for (i = 0; i < len; i += 3) {
 | |
|     v.val.lc = lc_get(l, i);
 | |
|     if (find_tree(set, v))
 | |
|       return 1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static struct adata *
 | |
| clist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
 | |
| {
 | |
|   if (!list)
 | |
|     return NULL;
 | |
| 
 | |
|   int tree = (set.type == T_SET);	/* 1 -> set is T_SET, 0 -> set is T_CLIST */
 | |
|   struct f_val v;
 | |
|   if (tree)
 | |
|     clist_set_type(set.val.t, &v);
 | |
|   else
 | |
|     v.type = T_PAIR;
 | |
| 
 | |
|   int len = int_set_get_size(list);
 | |
|   u32 *l = int_set_get_data(list);
 | |
|   u32 tmp[len];
 | |
|   u32 *k = tmp;
 | |
|   u32 *end = l + len;
 | |
| 
 | |
|   while (l < end) {
 | |
|     v.val.i = *l++;
 | |
|     /* pos && member(val, set) || !pos && !member(val, set),  member() depends on tree */
 | |
|     if ((tree ? !!find_tree(set.val.t, v) : int_set_contains(set.val.ad, v.val.i)) == pos)
 | |
|       *k++ = v.val.i;
 | |
|   }
 | |
| 
 | |
|   uint nl = (k - tmp) * sizeof(u32);
 | |
|   if (nl == list->length)
 | |
|     return list;
 | |
| 
 | |
|   struct adata *res = adata_empty(pool, nl);
 | |
|   memcpy(res->data, tmp, nl);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static struct adata *
 | |
| eclist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
 | |
| {
 | |
|   if (!list)
 | |
|     return NULL;
 | |
| 
 | |
|   int tree = (set.type == T_SET);	/* 1 -> set is T_SET, 0 -> set is T_CLIST */
 | |
|   struct f_val v;
 | |
| 
 | |
|   int len = int_set_get_size(list);
 | |
|   u32 *l = int_set_get_data(list);
 | |
|   u32 tmp[len];
 | |
|   u32 *k = tmp;
 | |
|   int i;
 | |
| 
 | |
|   v.type = T_EC;
 | |
|   for (i = 0; i < len; i += 2) {
 | |
|     v.val.ec = ec_get(l, i);
 | |
|     /* pos && member(val, set) || !pos && !member(val, set),  member() depends on tree */
 | |
|     if ((tree ? !!find_tree(set.val.t, v) : ec_set_contains(set.val.ad, v.val.ec)) == pos) {
 | |
|       *k++ = l[i];
 | |
|       *k++ = l[i+1];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint nl = (k - tmp) * sizeof(u32);
 | |
|   if (nl == list->length)
 | |
|     return list;
 | |
| 
 | |
|   struct adata *res = adata_empty(pool, nl);
 | |
|   memcpy(res->data, tmp, nl);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static struct adata *
 | |
| lclist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
 | |
| {
 | |
|   if (!list)
 | |
|     return NULL;
 | |
| 
 | |
|   int tree = (set.type == T_SET);	/* 1 -> set is T_SET, 0 -> set is T_CLIST */
 | |
|   struct f_val v;
 | |
| 
 | |
|   int len = int_set_get_size(list);
 | |
|   u32 *l = int_set_get_data(list);
 | |
|   u32 tmp[len];
 | |
|   u32 *k = tmp;
 | |
|   int i;
 | |
| 
 | |
|   v.type = T_LC;
 | |
|   for (i = 0; i < len; i += 3) {
 | |
|     v.val.lc = lc_get(l, i);
 | |
|     /* pos && member(val, set) || !pos && !member(val, set),  member() depends on tree */
 | |
|     if ((tree ? !!find_tree(set.val.t, v) : lc_set_contains(set.val.ad, v.val.lc)) == pos)
 | |
|       k = lc_copy(k, l+i);
 | |
|   }
 | |
| 
 | |
|   uint nl = (k - tmp) * sizeof(u32);
 | |
|   if (nl == list->length)
 | |
|     return list;
 | |
| 
 | |
|   struct adata *res = adata_empty(pool, nl);
 | |
|   memcpy(res->data, tmp, nl);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * val_in_range - implement |~| operator
 | |
|  * @v1: element
 | |
|  * @v2: set
 | |
|  *
 | |
|  * Checks if @v1 is element (|~| operator) of @v2.
 | |
|  */
 | |
| static int
 | |
| val_in_range(struct f_val v1, struct f_val v2)
 | |
| {
 | |
|   if ((v1.type == T_PATH) && (v2.type == T_PATH_MASK))
 | |
|     return as_path_match(v1.val.ad, v2.val.path_mask);
 | |
| 
 | |
|   if ((v1.type == T_INT) && (v2.type == T_PATH))
 | |
|     return as_path_contains(v2.val.ad, v1.val.i, 1);
 | |
| 
 | |
|   if (((v1.type == T_PAIR) || (v1.type == T_QUAD)) && (v2.type == T_CLIST))
 | |
|     return int_set_contains(v2.val.ad, v1.val.i);
 | |
| 
 | |
|   /* IP->Quad implicit conversion */
 | |
|   if (val_is_ip4(v1) && (v2.type == T_CLIST))
 | |
|     return int_set_contains(v2.val.ad, ipa_to_u32(v1.val.ip));
 | |
| 
 | |
|   if ((v1.type == T_EC) && (v2.type == T_ECLIST))
 | |
|     return ec_set_contains(v2.val.ad, v1.val.ec);
 | |
| 
 | |
|   if ((v1.type == T_LC) && (v2.type == T_LCLIST))
 | |
|     return lc_set_contains(v2.val.ad, v1.val.lc);
 | |
| 
 | |
|   if ((v1.type == T_STRING) && (v2.type == T_STRING))
 | |
|     return patmatch(v2.val.s, v1.val.s);
 | |
| 
 | |
|   if ((v1.type == T_IP) && (v2.type == T_NET))
 | |
|     return ipa_in_netX(v1.val.ip, v2.val.net);
 | |
| 
 | |
|   if ((v1.type == T_NET) && (v2.type == T_NET))
 | |
|     return net_in_netX(v1.val.net, v2.val.net);
 | |
| 
 | |
|   if ((v1.type == T_NET) && (v2.type == T_PREFIX_SET))
 | |
|     return trie_match_net(v2.val.ti, v1.val.net);
 | |
| 
 | |
|   if (v2.type != T_SET)
 | |
|     return CMP_ERROR;
 | |
| 
 | |
|   /* With integrated Quad<->IP implicit conversion */
 | |
|   if ((v1.type == v2.val.t->from.type) ||
 | |
|       ((v1.type == T_QUAD) && val_is_ip4(v2.val.t->from) && val_is_ip4(v2.val.t->to)))
 | |
|     return !!find_tree(v2.val.t, v1);
 | |
| 
 | |
|   if (v1.type == T_CLIST)
 | |
|     return clist_match_set(v1.val.ad, v2.val.t);
 | |
| 
 | |
|   if (v1.type == T_ECLIST)
 | |
|     return eclist_match_set(v1.val.ad, v2.val.t);
 | |
| 
 | |
|   if (v1.type == T_LCLIST)
 | |
|     return lclist_match_set(v1.val.ad, v2.val.t);
 | |
| 
 | |
|   if (v1.type == T_PATH)
 | |
|     return as_path_match_set(v1.val.ad, v2.val.t);
 | |
| 
 | |
|   return CMP_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * val_format - format filter value
 | |
|  */
 | |
| void
 | |
| val_format(struct f_val v, buffer *buf)
 | |
| {
 | |
|   char buf2[1024];
 | |
|   switch (v.type)
 | |
|   {
 | |
|   case T_VOID:	buffer_puts(buf, "(void)"); return;
 | |
|   case T_BOOL:	buffer_puts(buf, v.val.i ? "TRUE" : "FALSE"); return;
 | |
|   case T_INT:	buffer_print(buf, "%u", v.val.i); return;
 | |
|   case T_STRING: buffer_print(buf, "%s", v.val.s); return;
 | |
|   case T_IP:	buffer_print(buf, "%I", v.val.ip); return;
 | |
|   case T_NET:   buffer_print(buf, "%N", v.val.net); return;
 | |
|   case T_PAIR:	buffer_print(buf, "(%u,%u)", v.val.i >> 16, v.val.i & 0xffff); return;
 | |
|   case T_QUAD:	buffer_print(buf, "%R", v.val.i); return;
 | |
|   case T_EC:	ec_format(buf2, v.val.ec); buffer_print(buf, "%s", buf2); return;
 | |
|   case T_LC:	lc_format(buf2, v.val.lc); buffer_print(buf, "%s", buf2); return;
 | |
|   case T_RD:	rd_format(v.val.ec, buf2, 1024); buffer_print(buf, "%s", buf2); return;
 | |
|   case T_PREFIX_SET: trie_format(v.val.ti, buf); return;
 | |
|   case T_SET:	tree_format(v.val.t, buf); return;
 | |
|   case T_ENUM:	buffer_print(buf, "(enum %x)%u", v.type, v.val.i); return;
 | |
|   case T_PATH:	as_path_format(v.val.ad, buf2, 1000); buffer_print(buf, "(path %s)", buf2); return;
 | |
|   case T_CLIST:	int_set_format(v.val.ad, 1, -1, buf2, 1000); buffer_print(buf, "(clist %s)", buf2); return;
 | |
|   case T_ECLIST: ec_set_format(v.val.ad, -1, buf2, 1000); buffer_print(buf, "(eclist %s)", buf2); return;
 | |
|   case T_LCLIST: lc_set_format(v.val.ad, -1, buf2, 1000); buffer_print(buf, "(lclist %s)", buf2); return;
 | |
|   case T_PATH_MASK: pm_format(v.val.path_mask, buf); return;
 | |
|   default:	buffer_print(buf, "[unknown type %x]", v.type); return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static struct rte **f_rte;
 | |
| static struct rta *f_old_rta;
 | |
| static struct ea_list **f_tmp_attrs;
 | |
| static struct linpool *f_pool;
 | |
| static struct buffer f_buf;
 | |
| static int f_flags;
 | |
| 
 | |
| static inline void f_rte_cow(void)
 | |
| {
 | |
|   *f_rte = rte_cow(*f_rte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rta_cow - prepare rta for modification by filter
 | |
|  */
 | |
| static void
 | |
| f_rta_cow(void)
 | |
| {
 | |
|   if (!rta_is_cached((*f_rte)->attrs))
 | |
|     return;
 | |
| 
 | |
|   /* Prepare to modify rte */
 | |
|   f_rte_cow();
 | |
| 
 | |
|   /* Store old rta to free it later, it stores reference from rte_cow() */
 | |
|   f_old_rta = (*f_rte)->attrs;
 | |
| 
 | |
|   /*
 | |
|    * Get shallow copy of rta. Fields eattrs and nexthops of rta are shared
 | |
|    * with f_old_rta (they will be copied when the cached rta will be obtained
 | |
|    * at the end of f_run()), also the lock of hostentry is inherited (we
 | |
|    * suppose hostentry is not changed by filters).
 | |
|    */
 | |
|   (*f_rte)->attrs = rta_do_cow((*f_rte)->attrs, f_pool);
 | |
| }
 | |
| 
 | |
| static char *
 | |
| val_format_str(struct f_val v) {
 | |
|   buffer b;
 | |
|   LOG_BUFFER_INIT(b);
 | |
|   val_format(v, &b);
 | |
|   return lp_strdup(f_pool, b.start);
 | |
| }
 | |
| 
 | |
| static struct tbf rl_runtime_err = TBF_DEFAULT_LOG_LIMITS;
 | |
| 
 | |
| #define runtime(fmt, ...) do { \
 | |
|     log_rl(&rl_runtime_err, L_ERR "filters, line %d: " fmt, what->lineno, ##__VA_ARGS__); \
 | |
|     res.type = T_RETURN; \
 | |
|     res.val.i = F_ERROR; \
 | |
|     return res; \
 | |
|   } while(0)
 | |
| 
 | |
| #define ARG(x,y) \
 | |
| 	x = interpret(what->y); \
 | |
| 	if (x.type & T_RETURN) \
 | |
| 		return x;
 | |
| 
 | |
| #define ONEARG ARG(v1, a1.p)
 | |
| #define TWOARGS ARG(v1, a1.p) \
 | |
| 		ARG(v2, a2.p)
 | |
| #define TWOARGS_C TWOARGS \
 | |
|                   if (v1.type != v2.type) \
 | |
| 		    runtime( "Can't operate with values of incompatible types" );
 | |
| #define ACCESS_RTE \
 | |
|   do { if (!f_rte) runtime("No route to access"); } while (0)
 | |
| 
 | |
| #define BITFIELD_MASK(what) \
 | |
|   (1u << (what->a2.i >> 24))
 | |
| 
 | |
| /**
 | |
|  * interpret
 | |
|  * @what: filter to interpret
 | |
|  *
 | |
|  * Interpret given tree of filter instructions. This is core function
 | |
|  * of filter system and does all the hard work.
 | |
|  *
 | |
|  * Each instruction has 4 fields: code (which is instruction code),
 | |
|  * aux (which is extension to instruction code, typically type),
 | |
|  * arg1 and arg2 - arguments. Depending on instruction, arguments
 | |
|  * are either integers, or pointers to instruction trees. Common
 | |
|  * instructions like +, that have two expressions as arguments use
 | |
|  * TWOARGS macro to get both of them evaluated.
 | |
|  *
 | |
|  * &f_val structures are copied around, so there are no problems with
 | |
|  * memory managment.
 | |
|  */
 | |
| static struct f_val
 | |
| interpret(struct f_inst *what)
 | |
| {
 | |
|   struct symbol *sym;
 | |
|   struct f_val v1, v2, res, *vp;
 | |
|   unsigned u1, u2;
 | |
|   int i;
 | |
|   u32 as;
 | |
| 
 | |
|   res.type = T_VOID;
 | |
|   if (!what)
 | |
|     return res;
 | |
| 
 | |
|   switch(what->code) {
 | |
|   case ',':
 | |
|     TWOARGS;
 | |
|     break;
 | |
| 
 | |
| /* Binary operators */
 | |
|   case '+':
 | |
|     TWOARGS_C;
 | |
|     switch (res.type = v1.type) {
 | |
|     case T_VOID: runtime( "Can't operate with values of type void" );
 | |
|     case T_INT: res.val.i = v1.val.i + v2.val.i; break;
 | |
|     default: runtime( "Usage of unknown type" );
 | |
|     }
 | |
|     break;
 | |
|   case '-':
 | |
|     TWOARGS_C;
 | |
|     switch (res.type = v1.type) {
 | |
|     case T_VOID: runtime( "Can't operate with values of type void" );
 | |
|     case T_INT: res.val.i = v1.val.i - v2.val.i; break;
 | |
|     default: runtime( "Usage of unknown type" );
 | |
|     }
 | |
|     break;
 | |
|   case '*':
 | |
|     TWOARGS_C;
 | |
|     switch (res.type = v1.type) {
 | |
|     case T_VOID: runtime( "Can't operate with values of type void" );
 | |
|     case T_INT: res.val.i = v1.val.i * v2.val.i; break;
 | |
|     default: runtime( "Usage of unknown type" );
 | |
|     }
 | |
|     break;
 | |
|   case '/':
 | |
|     TWOARGS_C;
 | |
|     switch (res.type = v1.type) {
 | |
|     case T_VOID: runtime( "Can't operate with values of type void" );
 | |
|     case T_INT: if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
 | |
|       	        res.val.i = v1.val.i / v2.val.i; break;
 | |
|     default: runtime( "Usage of unknown type" );
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case '&':
 | |
|   case '|':
 | |
|     ARG(v1, a1.p);
 | |
|     if (v1.type != T_BOOL)
 | |
|       runtime( "Can't do boolean operation on non-booleans" );
 | |
|     if (v1.val.i == (what->code == '|')) {
 | |
|       res.type = T_BOOL;
 | |
|       res.val.i = v1.val.i;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     ARG(v2, a2.p);
 | |
|     if (v2.type != T_BOOL)
 | |
|       runtime( "Can't do boolean operation on non-booleans" );
 | |
|     res.type = T_BOOL;
 | |
|     res.val.i = v2.val.i;
 | |
|     break;
 | |
| 
 | |
|   case P('m','p'):
 | |
|     TWOARGS;
 | |
|     if ((v1.type != T_INT) || (v2.type != T_INT))
 | |
|       runtime( "Can't operate with value of non-integer type in pair constructor" );
 | |
|     u1 = v1.val.i;
 | |
|     u2 = v2.val.i;
 | |
|     if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
 | |
|       runtime( "Can't operate with value out of bounds in pair constructor" );
 | |
|     res.val.i = (u1 << 16) | u2;
 | |
|     res.type = T_PAIR;
 | |
|     break;
 | |
| 
 | |
|   case P('m','c'):
 | |
|     {
 | |
|       TWOARGS;
 | |
| 
 | |
|       int check, ipv4_used;
 | |
|       u32 key, val;
 | |
| 
 | |
|       if (v1.type == T_INT) {
 | |
| 	ipv4_used = 0; key = v1.val.i;
 | |
|       }
 | |
|       else if (v1.type == T_QUAD) {
 | |
| 	ipv4_used = 1; key = v1.val.i;
 | |
|       }
 | |
|       /* IP->Quad implicit conversion */
 | |
|       else if (val_is_ip4(v1)) {
 | |
| 	ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
 | |
|       }
 | |
|       else
 | |
| 	runtime("Can't operate with key of non-integer/IPv4 type in EC constructor");
 | |
| 
 | |
|       if (v2.type != T_INT)
 | |
| 	runtime("Can't operate with value of non-integer type in EC constructor");
 | |
|       val = v2.val.i;
 | |
| 
 | |
|       /* XXXX */
 | |
|       res.type = T_EC;
 | |
| 
 | |
|       if (what->aux == EC_GENERIC) {
 | |
| 	check = 0; res.val.ec = ec_generic(key, val);
 | |
|       }
 | |
|       else if (ipv4_used) {
 | |
| 	check = 1; res.val.ec = ec_ip4(what->aux, key, val);
 | |
|       }
 | |
|       else if (key < 0x10000) {
 | |
| 	check = 0; res.val.ec = ec_as2(what->aux, key, val);
 | |
|       }
 | |
|       else {
 | |
| 	check = 1; res.val.ec = ec_as4(what->aux, key, val);
 | |
|       }
 | |
| 
 | |
|       if (check && (val > 0xFFFF))
 | |
| 	runtime("Can't operate with value out of bounds in EC constructor");
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   case P('m','l'):
 | |
|     {
 | |
|       TWOARGS;
 | |
| 
 | |
|       /* Third argument hack */
 | |
|       struct f_val v3 = interpret(INST3(what).p);
 | |
|       if (v3.type & T_RETURN)
 | |
| 	return v3;
 | |
| 
 | |
|       if ((v1.type != T_INT) || (v2.type != T_INT) || (v3.type != T_INT))
 | |
| 	runtime( "Can't operate with value of non-integer type in LC constructor" );
 | |
| 
 | |
|       res.type = T_LC;
 | |
|       res.val.lc = (lcomm) { v1.val.i, v2.val.i, v3.val.i };
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| /* Relational operators */
 | |
| 
 | |
| #define COMPARE(x) \
 | |
|     TWOARGS; \
 | |
|     i = val_compare(v1, v2); \
 | |
|     if (i==CMP_ERROR) \
 | |
|       runtime( "Can't compare values of incompatible types" ); \
 | |
|     res.type = T_BOOL; \
 | |
|     res.val.i = (x); \
 | |
|     break;
 | |
| 
 | |
| #define SAME(x) \
 | |
|     TWOARGS; \
 | |
|     i = val_same(v1, v2); \
 | |
|     res.type = T_BOOL; \
 | |
|     res.val.i = (x); \
 | |
|     break;
 | |
| 
 | |
|   case P('!','='): SAME(!i);
 | |
|   case P('=','='): SAME(i);
 | |
|   case '<': COMPARE(i==-1);
 | |
|   case P('<','='): COMPARE(i!=1);
 | |
| 
 | |
|   case '!':
 | |
|     ONEARG;
 | |
|     if (v1.type != T_BOOL)
 | |
|       runtime( "Not applied to non-boolean" );
 | |
|     res = v1;
 | |
|     res.val.i = !res.val.i;
 | |
|     break;
 | |
| 
 | |
|   case '~':
 | |
|     TWOARGS;
 | |
|     res.type = T_BOOL;
 | |
|     res.val.i = val_in_range(v1, v2);
 | |
|     if (res.val.i == CMP_ERROR)
 | |
|       runtime( "~ applied on unknown type pair" );
 | |
|     res.val.i = !!res.val.i;
 | |
|     break;
 | |
| 
 | |
|   case P('!','~'):
 | |
|     TWOARGS;
 | |
|     res.type = T_BOOL;
 | |
|     res.val.i = val_in_range(v1, v2);
 | |
|     if (res.val.i == CMP_ERROR)
 | |
|       runtime( "!~ applied on unknown type pair" );
 | |
|     res.val.i = !res.val.i;
 | |
|     break;
 | |
| 
 | |
|   case P('d','e'):
 | |
|     ONEARG;
 | |
|     res.type = T_BOOL;
 | |
|     res.val.i = (v1.type != T_VOID);
 | |
|     break;
 | |
|   case 'T':
 | |
|     ONEARG;
 | |
|     switch (v1.type)
 | |
|     {
 | |
|       case T_NET:
 | |
| 	res.type = T_ENUM_NETTYPE;
 | |
| 	res.val.i = v1.val.net->type;
 | |
| 	break;
 | |
|       default:
 | |
| 	runtime( "Can't determine type of this item" );
 | |
|     }
 | |
|     break;
 | |
|   case P('I','i'):
 | |
|     ONEARG;
 | |
|     if (v1.type != T_IP)
 | |
|       runtime( "IP version check needs an IP address" );
 | |
|     res.type = T_BOOL;
 | |
|     res.val.i = ipa_is_ip4(v1.val.ip);
 | |
|     break;
 | |
| 
 | |
|   /* Set to indirect value, a1 = variable, a2 = value */
 | |
|   case 's':
 | |
|     ARG(v2, a2.p);
 | |
|     sym = what->a1.p;
 | |
|     vp = sym->def;
 | |
|     if ((sym->class != (SYM_VARIABLE | v2.type)) && (v2.type != T_VOID))
 | |
|     {
 | |
|       /* IP->Quad implicit conversion */
 | |
|       if ((sym->class == (SYM_VARIABLE | T_QUAD)) && val_is_ip4(v2))
 | |
|       {
 | |
| 	vp->type = T_QUAD;
 | |
| 	vp->val.i = ipa_to_u32(v2.val.ip);
 | |
| 	break;
 | |
|       }
 | |
|       runtime( "Assigning to variable of incompatible type" );
 | |
|     }
 | |
|     *vp = v2;
 | |
|     break;
 | |
| 
 | |
|     /* some constants have value in a2, some in *a1.p, strange. */
 | |
|   case 'c':	/* integer (or simple type) constant, string, set, or prefix_set */
 | |
|     res.type = what->aux;
 | |
| 
 | |
|     if (res.type == T_PREFIX_SET)
 | |
|       res.val.ti = what->a2.p;
 | |
|     else if (res.type == T_SET)
 | |
|       res.val.t = what->a2.p;
 | |
|     else if (res.type == T_STRING)
 | |
|       res.val.s = what->a2.p;
 | |
|     else
 | |
|       res.val.i = what->a2.i;
 | |
|     break;
 | |
|   case 'V':
 | |
|   case 'C':
 | |
|     res = * ((struct f_val *) what->a1.p);
 | |
|     break;
 | |
|   case 'p':
 | |
|     ONEARG;
 | |
|     val_format(v1, &f_buf);
 | |
|     break;
 | |
|   case '?':	/* ? has really strange error value, so we can implement if ... else nicely :-) */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_BOOL)
 | |
|       runtime( "If requires boolean expression" );
 | |
|     if (v1.val.i) {
 | |
|       ARG(res,a2.p);
 | |
|       res.val.i = 0;
 | |
|     } else res.val.i = 1;
 | |
|     res.type = T_BOOL;
 | |
|     break;
 | |
|   case '0':
 | |
|     debug( "No operation\n" );
 | |
|     break;
 | |
|   case P('p',','):
 | |
|     ONEARG;
 | |
|     if (what->a2.i == F_NOP || (what->a2.i != F_NONL && what->a1.p))
 | |
|       log_commit(*L_INFO, &f_buf);
 | |
| 
 | |
|     switch (what->a2.i) {
 | |
|     case F_QUITBIRD:
 | |
|       die( "Filter asked me to die" );
 | |
|     case F_ACCEPT:
 | |
|       /* Should take care about turning ACCEPT into MODIFY */
 | |
|     case F_ERROR:
 | |
|     case F_REJECT:	/* FIXME (noncritical) Should print complete route along with reason to reject route */
 | |
|       res.type = T_RETURN;
 | |
|       res.val.i = what->a2.i;
 | |
|       return res;	/* We have to return now, no more processing. */
 | |
|     case F_NONL:
 | |
|     case F_NOP:
 | |
|       break;
 | |
|     default:
 | |
|       bug( "unknown return type: Can't happen");
 | |
|     }
 | |
|     break;
 | |
|   case 'a':	/* rta access */
 | |
|     {
 | |
|       ACCESS_RTE;
 | |
|       struct rta *rta = (*f_rte)->attrs;
 | |
|       res.type = what->aux;
 | |
| 
 | |
|       switch (what->a2.i)
 | |
|       {
 | |
|       case SA_FROM:	res.val.ip = rta->from; break;
 | |
|       case SA_GW:	res.val.ip = rta->nh.gw; break;
 | |
|       case SA_NET:	res.val.net = (*f_rte)->net->n.addr; break;
 | |
|       case SA_PROTO:	res.val.s = rta->src->proto->name; break;
 | |
|       case SA_SOURCE:	res.val.i = rta->source; break;
 | |
|       case SA_SCOPE:	res.val.i = rta->scope; break;
 | |
|       case SA_DEST:	res.val.i = rta->dest; break;
 | |
|       case SA_IFNAME:	res.val.s = rta->nh.iface ? rta->nh.iface->name : ""; break;
 | |
|       case SA_IFINDEX:	res.val.i = rta->nh.iface ? rta->nh.iface->index : 0; break;
 | |
| 
 | |
|       default:
 | |
| 	bug("Invalid static attribute access (%x)", res.type);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case P('a','S'):
 | |
|     ACCESS_RTE;
 | |
|     ONEARG;
 | |
|     if (what->aux != v1.type)
 | |
|       runtime( "Attempt to set static attribute to incompatible type" );
 | |
| 
 | |
|     f_rta_cow();
 | |
|     {
 | |
|       struct rta *rta = (*f_rte)->attrs;
 | |
| 
 | |
|       switch (what->a2.i)
 | |
|       {
 | |
|       case SA_FROM:
 | |
| 	rta->from = v1.val.ip;
 | |
| 	break;
 | |
| 
 | |
|       case SA_GW:
 | |
| 	{
 | |
| 	  ip_addr ip = v1.val.ip;
 | |
| 	  neighbor *n = neigh_find(rta->src->proto, &ip, 0);
 | |
| 	  if (!n || (n->scope == SCOPE_HOST))
 | |
| 	    runtime( "Invalid gw address" );
 | |
| 
 | |
| 	  rta->dest = RTD_UNICAST;
 | |
| 	  rta->nh.gw = ip;
 | |
| 	  rta->nh.iface = n->iface;
 | |
| 	  rta->nh.next = NULL;
 | |
| 	  rta->hostentry = NULL;
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       case SA_SCOPE:
 | |
| 	rta->scope = v1.val.i;
 | |
| 	break;
 | |
| 
 | |
|       case SA_DEST:
 | |
| 	i = v1.val.i;
 | |
| 	if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
 | |
| 	  runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
 | |
| 
 | |
| 	rta->dest = i;
 | |
| 	rta->nh.gw = IPA_NONE;
 | |
| 	rta->nh.iface = NULL;
 | |
| 	rta->nh.next = NULL;
 | |
| 	rta->hostentry = NULL;
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	bug("Invalid static attribute access (%x)", res.type);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case P('e','a'):	/* Access to extended attributes */
 | |
|     ACCESS_RTE;
 | |
|     {
 | |
|       eattr *e = NULL;
 | |
|       u16 code = what->a2.i;
 | |
| 
 | |
|       if (!(f_flags & FF_FORCE_TMPATTR))
 | |
| 	e = ea_find((*f_rte)->attrs->eattrs, code);
 | |
|       if (!e)
 | |
| 	e = ea_find((*f_tmp_attrs), code);
 | |
|       if ((!e) && (f_flags & FF_FORCE_TMPATTR))
 | |
| 	e = ea_find((*f_rte)->attrs->eattrs, code);
 | |
| 
 | |
|       if (!e) {
 | |
| 	/* A special case: undefined int_set looks like empty int_set */
 | |
| 	if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_INT_SET) {
 | |
| 	  res.type = T_CLIST;
 | |
| 	  res.val.ad = adata_empty(f_pool, 0);
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
| 	/* The same special case for ec_set */
 | |
| 	if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_EC_SET) {
 | |
| 	  res.type = T_ECLIST;
 | |
| 	  res.val.ad = adata_empty(f_pool, 0);
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
| 	/* The same special case for lc_set */
 | |
| 	if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_LC_SET) {
 | |
| 	  res.type = T_LCLIST;
 | |
| 	  res.val.ad = adata_empty(f_pool, 0);
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
| 	/* Undefined value */
 | |
| 	res.type = T_VOID;
 | |
| 	break;
 | |
|       }
 | |
| 
 | |
|       switch (what->aux & EAF_TYPE_MASK) {
 | |
|       case EAF_TYPE_INT:
 | |
| 	res.type = T_INT;
 | |
| 	res.val.i = e->u.data;
 | |
| 	break;
 | |
|       case EAF_TYPE_ROUTER_ID:
 | |
| 	res.type = T_QUAD;
 | |
| 	res.val.i = e->u.data;
 | |
| 	break;
 | |
|       case EAF_TYPE_OPAQUE:
 | |
| 	res.type = T_ENUM_EMPTY;
 | |
| 	res.val.i = 0;
 | |
| 	break;
 | |
|       case EAF_TYPE_IP_ADDRESS:
 | |
| 	res.type = T_IP;
 | |
| 	struct adata * ad = e->u.ptr;
 | |
| 	res.val.ip = * (ip_addr *) ad->data;
 | |
| 	break;
 | |
|       case EAF_TYPE_AS_PATH:
 | |
|         res.type = T_PATH;
 | |
| 	res.val.ad = e->u.ptr;
 | |
| 	break;
 | |
|       case EAF_TYPE_BITFIELD:
 | |
| 	res.type = T_BOOL;
 | |
| 	res.val.i = !!(e->u.data & BITFIELD_MASK(what));
 | |
| 	break;
 | |
|       case EAF_TYPE_INT_SET:
 | |
| 	res.type = T_CLIST;
 | |
| 	res.val.ad = e->u.ptr;
 | |
| 	break;
 | |
|       case EAF_TYPE_EC_SET:
 | |
| 	res.type = T_ECLIST;
 | |
| 	res.val.ad = e->u.ptr;
 | |
| 	break;
 | |
|       case EAF_TYPE_LC_SET:
 | |
| 	res.type = T_LCLIST;
 | |
| 	res.val.ad = e->u.ptr;
 | |
| 	break;
 | |
|       case EAF_TYPE_UNDEF:
 | |
| 	res.type = T_VOID;
 | |
| 	break;
 | |
|       default:
 | |
| 	bug("Unknown type in e,a");
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case P('e','S'):
 | |
|     ACCESS_RTE;
 | |
|     ONEARG;
 | |
|     {
 | |
|       struct ea_list *l = lp_alloc(f_pool, sizeof(struct ea_list) + sizeof(eattr));
 | |
|       u16 code = what->a2.i;
 | |
| 
 | |
|       l->next = NULL;
 | |
|       l->flags = EALF_SORTED;
 | |
|       l->count = 1;
 | |
|       l->attrs[0].id = code;
 | |
|       l->attrs[0].flags = 0;
 | |
|       l->attrs[0].type = what->aux | EAF_ORIGINATED | EAF_FRESH;
 | |
| 
 | |
|       switch (what->aux & EAF_TYPE_MASK) {
 | |
|       case EAF_TYPE_INT:
 | |
| 	if (v1.type != T_INT)
 | |
| 	  runtime( "Setting int attribute to non-int value" );
 | |
| 	l->attrs[0].u.data = v1.val.i;
 | |
| 	break;
 | |
| 
 | |
|       case EAF_TYPE_ROUTER_ID:
 | |
| 	/* IP->Quad implicit conversion */
 | |
| 	if (val_is_ip4(v1)) {
 | |
| 	  l->attrs[0].u.data = ipa_to_u32(v1.val.ip);
 | |
| 	  break;
 | |
| 	}
 | |
| 	/* T_INT for backward compatibility */
 | |
| 	if ((v1.type != T_QUAD) && (v1.type != T_INT))
 | |
| 	  runtime( "Setting quad attribute to non-quad value" );
 | |
| 	l->attrs[0].u.data = v1.val.i;
 | |
| 	break;
 | |
| 
 | |
|       case EAF_TYPE_OPAQUE:
 | |
| 	runtime( "Setting opaque attribute is not allowed" );
 | |
| 	break;
 | |
|       case EAF_TYPE_IP_ADDRESS:
 | |
| 	if (v1.type != T_IP)
 | |
| 	  runtime( "Setting ip attribute to non-ip value" );
 | |
| 	int len = sizeof(ip_addr);
 | |
| 	struct adata *ad = lp_alloc(f_pool, sizeof(struct adata) + len);
 | |
| 	ad->length = len;
 | |
| 	(* (ip_addr *) ad->data) = v1.val.ip;
 | |
| 	l->attrs[0].u.ptr = ad;
 | |
| 	break;
 | |
|       case EAF_TYPE_AS_PATH:
 | |
| 	if (v1.type != T_PATH)
 | |
| 	  runtime( "Setting path attribute to non-path value" );
 | |
| 	l->attrs[0].u.ptr = v1.val.ad;
 | |
| 	break;
 | |
|       case EAF_TYPE_BITFIELD:
 | |
| 	if (v1.type != T_BOOL)
 | |
| 	  runtime( "Setting bit in bitfield attribute to non-bool value" );
 | |
| 	{
 | |
| 	  /* First, we have to find the old value */
 | |
| 	  eattr *e = NULL;
 | |
| 	  if (!(f_flags & FF_FORCE_TMPATTR))
 | |
| 	    e = ea_find((*f_rte)->attrs->eattrs, code);
 | |
| 	  if (!e)
 | |
| 	    e = ea_find((*f_tmp_attrs), code);
 | |
| 	  if ((!e) && (f_flags & FF_FORCE_TMPATTR))
 | |
| 	    e = ea_find((*f_rte)->attrs->eattrs, code);
 | |
| 	  u32 data = e ? e->u.data : 0;
 | |
| 
 | |
| 	  if (v1.val.i)
 | |
| 	    l->attrs[0].u.data = data | BITFIELD_MASK(what);
 | |
| 	  else
 | |
| 	    l->attrs[0].u.data = data & ~BITFIELD_MASK(what);;
 | |
| 	}
 | |
| 	break;
 | |
|       case EAF_TYPE_INT_SET:
 | |
| 	if (v1.type != T_CLIST)
 | |
| 	  runtime( "Setting clist attribute to non-clist value" );
 | |
| 	l->attrs[0].u.ptr = v1.val.ad;
 | |
| 	break;
 | |
|       case EAF_TYPE_EC_SET:
 | |
| 	if (v1.type != T_ECLIST)
 | |
| 	  runtime( "Setting eclist attribute to non-eclist value" );
 | |
| 	l->attrs[0].u.ptr = v1.val.ad;
 | |
| 	break;
 | |
|       case EAF_TYPE_LC_SET:
 | |
| 	if (v1.type != T_LCLIST)
 | |
| 	  runtime( "Setting lclist attribute to non-lclist value" );
 | |
| 	l->attrs[0].u.ptr = v1.val.ad;
 | |
| 	break;
 | |
|       case EAF_TYPE_UNDEF:
 | |
| 	if (v1.type != T_VOID)
 | |
| 	  runtime( "Setting void attribute to non-void value" );
 | |
| 	l->attrs[0].u.data = 0;
 | |
| 	break;
 | |
|       default: bug("Unknown type in e,S");
 | |
|       }
 | |
| 
 | |
|       if (!(what->aux & EAF_TEMP) && (!(f_flags & FF_FORCE_TMPATTR))) {
 | |
| 	f_rta_cow();
 | |
| 	l->next = (*f_rte)->attrs->eattrs;
 | |
| 	(*f_rte)->attrs->eattrs = l;
 | |
|       } else {
 | |
| 	l->next = (*f_tmp_attrs);
 | |
| 	(*f_tmp_attrs) = l;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'P':
 | |
|     ACCESS_RTE;
 | |
|     res.type = T_INT;
 | |
|     res.val.i = (*f_rte)->pref;
 | |
|     break;
 | |
|   case P('P','S'):
 | |
|     ACCESS_RTE;
 | |
|     ONEARG;
 | |
|     if (v1.type != T_INT)
 | |
|       runtime( "Can't set preference to non-integer" );
 | |
|     if (v1.val.i > 0xFFFF)
 | |
|       runtime( "Setting preference value out of bounds" );
 | |
|     f_rte_cow();
 | |
|     (*f_rte)->pref = v1.val.i;
 | |
|     break;
 | |
|   case 'L':	/* Get length of */
 | |
|     ONEARG;
 | |
|     res.type = T_INT;
 | |
|     switch(v1.type) {
 | |
|     case T_NET:    res.val.i = net_pxlen(v1.val.net); break;
 | |
|     case T_PATH:   res.val.i = as_path_getlen(v1.val.ad); break;
 | |
|     case T_CLIST:  res.val.i = int_set_get_size(v1.val.ad); break;
 | |
|     case T_ECLIST: res.val.i = ec_set_get_size(v1.val.ad); break;
 | |
|     case T_LCLIST: res.val.i = lc_set_get_size(v1.val.ad); break;
 | |
|     default: runtime( "Prefix, path, clist or eclist expected" );
 | |
|     }
 | |
|     break;
 | |
|   case P('R','m'): 	/* Get ROA max prefix length */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_NET || !net_is_roa(v1.val.net))
 | |
|       runtime( "ROA expected" );
 | |
| 
 | |
|     res.type = T_INT;
 | |
|     res.val.i = (v1.val.net->type == NET_ROA4) ?
 | |
|       ((net_addr_roa4 *) v1.val.net)->max_pxlen :
 | |
|       ((net_addr_roa6 *) v1.val.net)->max_pxlen;
 | |
|     break;
 | |
|   case P('R','a'): 	/* Get ROA ASN */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_NET || !net_is_roa(v1.val.net))
 | |
|       runtime( "ROA expected" );
 | |
| 
 | |
|     res.type = T_INT;
 | |
|     res.val.i = (v1.val.net->type == NET_ROA4) ?
 | |
|       ((net_addr_roa4 *) v1.val.net)->asn :
 | |
|       ((net_addr_roa6 *) v1.val.net)->asn;
 | |
|     break;
 | |
|   case P('c','p'):	/* Convert prefix to ... */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_NET)
 | |
|       runtime( "Prefix expected" );
 | |
|     res.type = T_IP;
 | |
|     res.val.ip = net_prefix(v1.val.net);
 | |
|     break;
 | |
|   case P('R','D'):
 | |
|     ONEARG;
 | |
|     if (v1.type != T_NET)
 | |
|       runtime( "Prefix expected" );
 | |
|     if (!net_is_vpn(v1.val.net))
 | |
|       runtime( "VPN address expected" );
 | |
|     res.type = T_RD;
 | |
|     res.val.ec = net_rd(v1.val.net);
 | |
|     break;
 | |
|   case P('a','f'):	/* Get first ASN from AS PATH */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_PATH)
 | |
|       runtime( "AS path expected" );
 | |
| 
 | |
|     as = 0;
 | |
|     as_path_get_first(v1.val.ad, &as);
 | |
|     res.type = T_INT;
 | |
|     res.val.i = as;
 | |
|     break;
 | |
|   case P('a','l'):	/* Get last ASN from AS PATH */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_PATH)
 | |
|       runtime( "AS path expected" );
 | |
| 
 | |
|     as = 0;
 | |
|     as_path_get_last(v1.val.ad, &as);
 | |
|     res.type = T_INT;
 | |
|     res.val.i = as;
 | |
|     break;
 | |
|   case P('a','L'):	/* Get last ASN from non-aggregated part of AS PATH */
 | |
|     ONEARG;
 | |
|     if (v1.type != T_PATH)
 | |
|       runtime( "AS path expected" );
 | |
| 
 | |
|     res.type = T_INT;
 | |
|     res.val.i = as_path_get_last_nonaggregated(v1.val.ad);
 | |
|     break;
 | |
|   case 'r':
 | |
|     ONEARG;
 | |
|     res = v1;
 | |
|     res.type |= T_RETURN;
 | |
|     return res;
 | |
|   case P('c','a'): /* CALL: this is special: if T_RETURN and returning some value, mask it out  */
 | |
|     ONEARG;
 | |
|     res = interpret(what->a2.p);
 | |
|     if (res.type == T_RETURN)
 | |
|       return res;
 | |
|     res.type &= ~T_RETURN;
 | |
|     break;
 | |
|   case P('c','v'):	/* Clear local variables */
 | |
|     for (sym = what->a1.p; sym != NULL; sym = sym->aux2)
 | |
|       ((struct f_val *) sym->def)->type = T_VOID;
 | |
|     break;
 | |
|   case P('S','W'):
 | |
|     ONEARG;
 | |
|     {
 | |
|       struct f_tree *t = find_tree(what->a2.p, v1);
 | |
|       if (!t) {
 | |
| 	v1.type = T_VOID;
 | |
| 	t = find_tree(what->a2.p, v1);
 | |
| 	if (!t) {
 | |
| 	  debug( "No else statement?\n");
 | |
| 	  break;
 | |
| 	}
 | |
|       }
 | |
|       /* It is actually possible to have t->data NULL */
 | |
| 
 | |
|       res = interpret(t->data);
 | |
|       if (res.type & T_RETURN)
 | |
| 	return res;
 | |
|     }
 | |
|     break;
 | |
|   case P('i','M'): /* IP.MASK(val) */
 | |
|     TWOARGS;
 | |
|     if (v2.type != T_INT)
 | |
|       runtime( "Integer expected");
 | |
|     if (v1.type != T_IP)
 | |
|       runtime( "You can mask only IP addresses" );
 | |
| 
 | |
|     res.type = T_IP;
 | |
|     res.val.ip = ipa_is_ip4(v1.val.ip) ?
 | |
|       ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
 | |
|       ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i)));
 | |
|     break;
 | |
| 
 | |
|   case 'E':	/* Create empty attribute */
 | |
|     res.type = what->aux;
 | |
|     res.val.ad = adata_empty(f_pool, 0);
 | |
|     break;
 | |
|   case P('A','p'):	/* Path prepend */
 | |
|     TWOARGS;
 | |
|     if (v1.type != T_PATH)
 | |
|       runtime("Can't prepend to non-path");
 | |
|     if (v2.type != T_INT)
 | |
|       runtime("Can't prepend non-integer");
 | |
| 
 | |
|     res.type = T_PATH;
 | |
|     res.val.ad = as_path_prepend(f_pool, v1.val.ad, v2.val.i);
 | |
|     break;
 | |
| 
 | |
|   case P('C','a'):	/* (Extended) Community list add or delete */
 | |
|     TWOARGS;
 | |
|     if (v1.type == T_PATH)
 | |
|     {
 | |
|       struct f_tree *set = NULL;
 | |
|       u32 key = 0;
 | |
|       int pos;
 | |
| 
 | |
|       if (v2.type == T_INT)
 | |
| 	key = v2.val.i;
 | |
|       else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
 | |
| 	set = v2.val.t;
 | |
|       else
 | |
| 	runtime("Can't delete non-integer (set)");
 | |
| 
 | |
|       switch (what->aux)
 | |
|       {
 | |
|       case 'a':	runtime("Can't add to path");
 | |
|       case 'd':	pos = 0; break;
 | |
|       case 'f':	pos = 1; break;
 | |
|       default:	bug("unknown Ca operation");
 | |
|       }
 | |
| 
 | |
|       if (pos && !set)
 | |
| 	runtime("Can't filter integer");
 | |
| 
 | |
|       res.type = T_PATH;
 | |
|       res.val.ad = as_path_filter(f_pool, v1.val.ad, set, key, pos);
 | |
|     }
 | |
|     else if (v1.type == T_CLIST)
 | |
|     {
 | |
|       /* Community (or cluster) list */
 | |
|       struct f_val dummy;
 | |
|       int arg_set = 0;
 | |
|       uint n = 0;
 | |
| 
 | |
|       if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
 | |
| 	n = v2.val.i;
 | |
|       /* IP->Quad implicit conversion */
 | |
|       else if (val_is_ip4(v2))
 | |
| 	n = ipa_to_u32(v2.val.ip);
 | |
|       else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
 | |
| 	arg_set = 1;
 | |
|       else if (v2.type == T_CLIST)
 | |
| 	arg_set = 2;
 | |
|       else
 | |
| 	runtime("Can't add/delete non-pair");
 | |
| 
 | |
|       res.type = T_CLIST;
 | |
|       switch (what->aux)
 | |
|       {
 | |
|       case 'a':
 | |
| 	if (arg_set == 1)
 | |
| 	  runtime("Can't add set");
 | |
| 	else if (!arg_set)
 | |
| 	  res.val.ad = int_set_add(f_pool, v1.val.ad, n);
 | |
| 	else
 | |
| 	  res.val.ad = int_set_union(f_pool, v1.val.ad, v2.val.ad);
 | |
| 	break;
 | |
| 
 | |
|       case 'd':
 | |
| 	if (!arg_set)
 | |
| 	  res.val.ad = int_set_del(f_pool, v1.val.ad, n);
 | |
| 	else
 | |
| 	  res.val.ad = clist_filter(f_pool, v1.val.ad, v2, 0);
 | |
| 	break;
 | |
| 
 | |
|       case 'f':
 | |
| 	if (!arg_set)
 | |
| 	  runtime("Can't filter pair");
 | |
| 	res.val.ad = clist_filter(f_pool, v1.val.ad, v2, 1);
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	bug("unknown Ca operation");
 | |
|       }
 | |
|     }
 | |
|     else if (v1.type == T_ECLIST)
 | |
|     {
 | |
|       /* Extended community list */
 | |
|       int arg_set = 0;
 | |
| 
 | |
|       /* v2.val is either EC or EC-set */
 | |
|       if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
 | |
| 	arg_set = 1;
 | |
|       else if (v2.type == T_ECLIST)
 | |
| 	arg_set = 2;
 | |
|       else if (v2.type != T_EC)
 | |
| 	runtime("Can't add/delete non-ec");
 | |
| 
 | |
|       res.type = T_ECLIST;
 | |
|       switch (what->aux)
 | |
|       {
 | |
|       case 'a':
 | |
| 	if (arg_set == 1)
 | |
| 	  runtime("Can't add set");
 | |
| 	else if (!arg_set)
 | |
| 	  res.val.ad = ec_set_add(f_pool, v1.val.ad, v2.val.ec);
 | |
| 	else
 | |
| 	  res.val.ad = ec_set_union(f_pool, v1.val.ad, v2.val.ad);
 | |
| 	break;
 | |
| 
 | |
|       case 'd':
 | |
| 	if (!arg_set)
 | |
| 	  res.val.ad = ec_set_del(f_pool, v1.val.ad, v2.val.ec);
 | |
| 	else
 | |
| 	  res.val.ad = eclist_filter(f_pool, v1.val.ad, v2, 0);
 | |
| 	break;
 | |
| 
 | |
|       case 'f':
 | |
| 	if (!arg_set)
 | |
| 	  runtime("Can't filter ec");
 | |
| 	res.val.ad = eclist_filter(f_pool, v1.val.ad, v2, 1);
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	bug("unknown Ca operation");
 | |
|       }
 | |
|     }
 | |
|     else if (v1.type == T_LCLIST)
 | |
|     {
 | |
|       /* Large community list */
 | |
|       int arg_set = 0;
 | |
| 
 | |
|       /* v2.val is either LC or LC-set */
 | |
|       if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
 | |
| 	arg_set = 1;
 | |
|       else if (v2.type == T_LCLIST)
 | |
| 	arg_set = 2;
 | |
|       else if (v2.type != T_LC)
 | |
| 	runtime("Can't add/delete non-lc");
 | |
| 
 | |
|       res.type = T_LCLIST;
 | |
|       switch (what->aux)
 | |
|       {
 | |
|       case 'a':
 | |
| 	if (arg_set == 1)
 | |
| 	  runtime("Can't add set");
 | |
| 	else if (!arg_set)
 | |
| 	  res.val.ad = lc_set_add(f_pool, v1.val.ad, v2.val.lc);
 | |
| 	else
 | |
| 	  res.val.ad = lc_set_union(f_pool, v1.val.ad, v2.val.ad);
 | |
| 	break;
 | |
| 
 | |
|       case 'd':
 | |
| 	if (!arg_set)
 | |
| 	  res.val.ad = lc_set_del(f_pool, v1.val.ad, v2.val.lc);
 | |
| 	else
 | |
| 	  res.val.ad = lclist_filter(f_pool, v1.val.ad, v2, 0);
 | |
| 	break;
 | |
| 
 | |
|       case 'f':
 | |
| 	if (!arg_set)
 | |
| 	  runtime("Can't filter lc");
 | |
| 	res.val.ad = lclist_filter(f_pool, v1.val.ad, v2, 1);
 | |
| 	break;
 | |
| 
 | |
|       default:
 | |
| 	bug("unknown Ca operation");
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|       runtime("Can't add/delete to non-[e|l]clist");
 | |
| 
 | |
|     break;
 | |
| 
 | |
| 
 | |
|   case P('R','C'):	/* ROA Check */
 | |
|     if (what->arg1)
 | |
|     {
 | |
|       TWOARGS;
 | |
|       if ((v1.type != T_NET) || (v2.type != T_INT))
 | |
| 	runtime("Invalid argument to roa_check()");
 | |
| 
 | |
|       as = v2.val.i;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       ACCESS_RTE;
 | |
|       v1.val.net = (*f_rte)->net->n.addr;
 | |
| 
 | |
|       /* We ignore temporary attributes, probably not a problem here */
 | |
|       /* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
 | |
|       eattr *e = ea_find((*f_rte)->attrs->eattrs, EA_CODE(EAP_BGP, 0x02));
 | |
| 
 | |
|       if (!e || e->type != EAF_TYPE_AS_PATH)
 | |
| 	runtime("Missing AS_PATH attribute");
 | |
| 
 | |
|       as_path_get_last(e->u.ptr, &as);
 | |
|     }
 | |
| 
 | |
|     struct rtable *table = ((struct f_inst_roa_check *) what)->rtc->table;
 | |
|     if (!table)
 | |
|       runtime("Missing ROA table");
 | |
| 
 | |
|     if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
 | |
|       runtime("Table type must be either ROA4 or ROA6");
 | |
| 
 | |
|     res.type = T_ENUM_ROA;
 | |
| 
 | |
|     if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
 | |
|       res.val.i = ROA_UNKNOWN; /* Prefix and table type mismatch */
 | |
|     else
 | |
|       res.val.i = net_roa_check(table, v1.val.net, as);
 | |
| 
 | |
|     break;
 | |
| 
 | |
|   case P('f','m'):	/* Format */
 | |
|     ONEARG;
 | |
| 
 | |
|     res.type = T_STRING;
 | |
|     res.val.s = val_format_str(v1);
 | |
|     break;
 | |
| 
 | |
|   case P('a','s'):	/* Birdtest Assert */
 | |
|     ONEARG;
 | |
| 
 | |
|     if (v1.type != T_BOOL)
 | |
|       runtime("Should be boolean value");
 | |
| 
 | |
|     res.type = v1.type;
 | |
|     res.val = v1.val;
 | |
| 
 | |
|     CALL(bt_assert_hook, res.val.i, what);
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     bug( "Unknown instruction %d (%c)", what->code, what->code & 0xff);
 | |
|   }
 | |
|   if (what->next)
 | |
|     return interpret(what->next);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #undef ARG
 | |
| #define ARG(x,y) \
 | |
| 	if (!i_same(f1->y, f2->y)) \
 | |
| 		return 0;
 | |
| 
 | |
| #define ONEARG ARG(v1, a1.p)
 | |
| #define TWOARGS ARG(v1, a1.p) \
 | |
| 		ARG(v2, a2.p)
 | |
| 
 | |
| #define A2_SAME if (f1->a2.i != f2->a2.i) return 0;
 | |
| 
 | |
| /*
 | |
|  * i_same - function that does real comparing of instruction trees, you should call filter_same from outside
 | |
|  */
 | |
| int
 | |
| i_same(struct f_inst *f1, struct f_inst *f2)
 | |
| {
 | |
|   if ((!!f1) != (!!f2))
 | |
|     return 0;
 | |
|   if (!f1)
 | |
|     return 1;
 | |
|   if (f1->aux != f2->aux)
 | |
|     return 0;
 | |
|   if (f1->code != f2->code)
 | |
|     return 0;
 | |
|   if (f1 == f2)		/* It looks strange, but it is possible with call rewriting trickery */
 | |
|     return 1;
 | |
| 
 | |
|   switch(f1->code) {
 | |
|   case ',': /* fall through */
 | |
|   case '+':
 | |
|   case '-':
 | |
|   case '*':
 | |
|   case '/':
 | |
|   case '|':
 | |
|   case '&':
 | |
|   case P('m','p'):
 | |
|   case P('m','c'):
 | |
|   case P('!','='):
 | |
|   case P('=','='):
 | |
|   case '<':
 | |
|   case P('<','='): TWOARGS; break;
 | |
| 
 | |
|   case '!': ONEARG; break;
 | |
|   case P('!', '~'):
 | |
|   case '~': TWOARGS; break;
 | |
|   case P('d','e'): ONEARG; break;
 | |
|   case 'T': ONEARG; break;
 | |
|   case P('n','T'): break;
 | |
| 
 | |
|   case P('m','l'):
 | |
|     TWOARGS;
 | |
|     if (!i_same(INST3(f1).p, INST3(f2).p))
 | |
|       return 0;
 | |
|     break;
 | |
| 
 | |
|   case 's':
 | |
|     ARG(v2, a2.p);
 | |
|     {
 | |
|       struct symbol *s1, *s2;
 | |
|       s1 = f1->a1.p;
 | |
|       s2 = f2->a1.p;
 | |
|       if (strcmp(s1->name, s2->name))
 | |
| 	return 0;
 | |
|       if (s1->class != s2->class)
 | |
| 	return 0;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case 'c':
 | |
|     switch (f1->aux) {
 | |
| 
 | |
|     case T_PREFIX_SET:
 | |
|       if (!trie_same(f1->a2.p, f2->a2.p))
 | |
| 	return 0;
 | |
|       break;
 | |
| 
 | |
|     case T_SET:
 | |
|       if (!same_tree(f1->a2.p, f2->a2.p))
 | |
| 	return 0;
 | |
|       break;
 | |
| 
 | |
|     case T_STRING:
 | |
|       if (strcmp(f1->a2.p, f2->a2.p))
 | |
| 	return 0;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       A2_SAME;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case 'C':
 | |
|     if (!val_same(* (struct f_val *) f1->a1.p, * (struct f_val *) f2->a1.p))
 | |
|       return 0;
 | |
|     break;
 | |
| 
 | |
|   case 'V':
 | |
|     if (strcmp((char *) f1->a2.p, (char *) f2->a2.p))
 | |
|       return 0;
 | |
|     break;
 | |
|   case 'p': case 'L': ONEARG; break;
 | |
|   case '?': TWOARGS; break;
 | |
|   case '0': case 'E': break;
 | |
|   case P('p',','): ONEARG; A2_SAME; break;
 | |
|   case 'P':
 | |
|   case 'a': A2_SAME; break;
 | |
|   case P('e','a'): A2_SAME; break;
 | |
|   case P('P','S'):
 | |
|   case P('a','S'):
 | |
|   case P('e','S'): ONEARG; A2_SAME; break;
 | |
| 
 | |
|   case 'r': ONEARG; break;
 | |
|   case P('c','p'): ONEARG; break;
 | |
|   case P('R','D'): ONEARG; break;
 | |
|   case P('c','a'): /* Call rewriting trickery to avoid exponential behaviour */
 | |
|              ONEARG;
 | |
| 	     if (!i_same(f1->a2.p, f2->a2.p))
 | |
| 	       return 0;
 | |
| 	     f2->a2.p = f1->a2.p;
 | |
| 	     break;
 | |
|   case P('c','v'): break; /* internal instruction */
 | |
|   case P('S','W'): ONEARG; if (!same_tree(f1->a2.p, f2->a2.p)) return 0; break;
 | |
|   case P('i','M'): TWOARGS; break;
 | |
|   case P('A','p'): TWOARGS; break;
 | |
|   case P('C','a'): TWOARGS; break;
 | |
|   case P('a','f'):
 | |
|   case P('a','l'):
 | |
|   case P('a','L'): ONEARG; break;
 | |
|   case P('R','C'):
 | |
|     TWOARGS;
 | |
|     /* Does not really make sense - ROA check results may change anyway */
 | |
|     if (strcmp(((struct f_inst_roa_check *) f1)->rtc->name,
 | |
| 	       ((struct f_inst_roa_check *) f2)->rtc->name))
 | |
|       return 0;
 | |
|     break;
 | |
|   default:
 | |
|     bug( "Unknown instruction %d in same (%c)", f1->code, f1->code & 0xff);
 | |
|   }
 | |
|   return i_same(f1->next, f2->next);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * f_run - run a filter for a route
 | |
|  * @filter: filter to run
 | |
|  * @rte: route being filtered, may be modified
 | |
|  * @tmp_attrs: temporary attributes, prepared by caller or generated by f_run()
 | |
|  * @tmp_pool: all filter allocations go from this pool
 | |
|  * @flags: flags
 | |
|  *
 | |
|  * If filter needs to modify the route, there are several
 | |
|  * posibilities. @rte might be read-only (with REF_COW flag), in that
 | |
|  * case rw copy is obtained by rte_cow() and @rte is replaced. If
 | |
|  * @rte is originally rw, it may be directly modified (and it is never
 | |
|  * copied).
 | |
|  *
 | |
|  * The returned rte may reuse the (possibly cached, cloned) rta, or
 | |
|  * (if rta was modificied) contains a modified uncached rta, which
 | |
|  * uses parts allocated from @tmp_pool and parts shared from original
 | |
|  * rta. There is one exception - if @rte is rw but contains a cached
 | |
|  * rta and that is modified, rta in returned rte is also cached.
 | |
|  *
 | |
|  * Ownership of cached rtas is consistent with rte, i.e.
 | |
|  * if a new rte is returned, it has its own clone of cached rta
 | |
|  * (and cached rta of read-only source rte is intact), if rte is
 | |
|  * modified in place, old cached rta is possibly freed.
 | |
|  */
 | |
| int
 | |
| f_run(struct filter *filter, struct rte **rte, struct ea_list **tmp_attrs, struct linpool *tmp_pool, int flags)
 | |
| {
 | |
|   if (filter == FILTER_ACCEPT)
 | |
|     return F_ACCEPT;
 | |
| 
 | |
|   if (filter == FILTER_REJECT)
 | |
|     return F_REJECT;
 | |
| 
 | |
|   int rte_cow = ((*rte)->flags & REF_COW);
 | |
|   DBG( "Running filter `%s'...", filter->name );
 | |
| 
 | |
|   f_rte = rte;
 | |
|   f_old_rta = NULL;
 | |
|   f_tmp_attrs = tmp_attrs;
 | |
|   f_pool = tmp_pool;
 | |
|   f_flags = flags;
 | |
| 
 | |
|   LOG_BUFFER_INIT(f_buf);
 | |
| 
 | |
|   struct f_val res = interpret(filter->root);
 | |
| 
 | |
|   if (f_old_rta) {
 | |
|     /*
 | |
|      * Cached rta was modified and f_rte contains now an uncached one,
 | |
|      * sharing some part with the cached one. The cached rta should
 | |
|      * be freed (if rte was originally COW, f_old_rta is a clone
 | |
|      * obtained during rte_cow()).
 | |
|      *
 | |
|      * This also implements the exception mentioned in f_run()
 | |
|      * description. The reason for this is that rta reuses parts of
 | |
|      * f_old_rta, and these may be freed during rta_free(f_old_rta).
 | |
|      * This is not the problem if rte was COW, because original rte
 | |
|      * also holds the same rta.
 | |
|      */
 | |
|     if (!rte_cow)
 | |
|       (*f_rte)->attrs = rta_lookup((*f_rte)->attrs);
 | |
| 
 | |
|     rta_free(f_old_rta);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (res.type != T_RETURN) {
 | |
|     log_rl(&rl_runtime_err, L_ERR "Filter %s did not return accept nor reject. Make up your mind", filter->name);
 | |
|     return F_ERROR;
 | |
|   }
 | |
|   DBG( "done (%u)\n", res.val.i );
 | |
|   return res.val.i;
 | |
| }
 | |
| 
 | |
| /* TODO: perhaps we could integrate f_eval(), f_eval_rte() and f_run() */
 | |
| 
 | |
| struct f_val
 | |
| f_eval_rte(struct f_inst *expr, struct rte **rte, struct linpool *tmp_pool)
 | |
| {
 | |
|   struct ea_list *tmp_attrs = NULL;
 | |
| 
 | |
|   f_rte = rte;
 | |
|   f_old_rta = NULL;
 | |
|   f_tmp_attrs = &tmp_attrs;
 | |
|   f_pool = tmp_pool;
 | |
|   f_flags = 0;
 | |
| 
 | |
|   LOG_BUFFER_INIT(f_buf);
 | |
| 
 | |
|   /* Note that in this function we assume that rte->attrs is private / uncached */
 | |
|   struct f_val res = interpret(expr);
 | |
| 
 | |
|   /* Hack to include EAF_TEMP attributes to the main list */
 | |
|   (*rte)->attrs->eattrs = ea_append(tmp_attrs, (*rte)->attrs->eattrs);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| struct f_val
 | |
| f_eval(struct f_inst *expr, struct linpool *tmp_pool)
 | |
| {
 | |
|   f_flags = 0;
 | |
|   f_tmp_attrs = NULL;
 | |
|   f_rte = NULL;
 | |
|   f_pool = tmp_pool;
 | |
| 
 | |
|   LOG_BUFFER_INIT(f_buf);
 | |
| 
 | |
|   return interpret(expr);
 | |
| }
 | |
| 
 | |
| uint
 | |
| f_eval_int(struct f_inst *expr)
 | |
| {
 | |
|   /* Called independently in parse-time to eval expressions */
 | |
|   struct f_val res = f_eval(expr, cfg_mem);
 | |
| 
 | |
|   if (res.type != T_INT)
 | |
|     cf_error("Integer expression expected");
 | |
| 
 | |
|   return res.val.i;
 | |
| }
 | |
| 
 | |
| u32
 | |
| f_eval_asn(struct f_inst *expr)
 | |
| {
 | |
|   /* Called as a part of another interpret call, therefore no log_reset() */
 | |
|   struct f_val res = interpret(expr);
 | |
|   return (res.type == T_INT) ? res.val.i : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filter_same - compare two filters
 | |
|  * @new: first filter to be compared
 | |
|  * @old: second filter to be compared, notice that this filter is
 | |
|  * damaged while comparing.
 | |
|  *
 | |
|  * Returns 1 in case filters are same, otherwise 0. If there are
 | |
|  * underlying bugs, it will rather say 0 on same filters than say
 | |
|  * 1 on different.
 | |
|  */
 | |
| int
 | |
| filter_same(struct filter *new, struct filter *old)
 | |
| {
 | |
|   if (old == new)	/* Handle FILTER_ACCEPT and FILTER_REJECT */
 | |
|     return 1;
 | |
|   if (old == FILTER_ACCEPT || old == FILTER_REJECT ||
 | |
|       new == FILTER_ACCEPT || new == FILTER_REJECT)
 | |
|     return 0;
 | |
|   return i_same(new->root, old->root);
 | |
| }
 |