mirror of
				https://gitlab.labs.nic.cz/labs/bird.git
				synced 2024-05-11 16:54:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1281 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1281 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *	Filters: Instructions themselves
 | 
						|
 *
 | 
						|
 *	Copyright 1998 Pavel Machek <pavel@ucw.cz>
 | 
						|
 *	Copyright 2018 Maria Matejka <mq@jmq.cz>
 | 
						|
 *	Copyright 2018 CZ.NIC z.s.p.o.
 | 
						|
 *
 | 
						|
 *	Can be freely distributed and used under the terms of the GNU GPL.
 | 
						|
 *
 | 
						|
 *	The filter code goes through several phases:
 | 
						|
 *
 | 
						|
 *	1  Parsing
 | 
						|
 *	Flex- and Bison-generated parser decodes the human-readable data into
 | 
						|
 *	a struct f_inst tree. This is an infix tree that was interpreted by
 | 
						|
 *	depth-first search execution in previous versions of the interpreter.
 | 
						|
 *	All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
 | 
						|
 *	translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
 | 
						|
 *	compile time. If the result of the instruction is always the same,
 | 
						|
 *	it's reduced to FI_CONSTANT directly in constructor. This phase also
 | 
						|
 *	counts how many instructions are underlying in means of f_line_item
 | 
						|
 *	fields to know how much we have to allocate in the next phase.
 | 
						|
 *
 | 
						|
 *	2  Linearize before interpreting
 | 
						|
 *	The infix tree is always interpreted in the same order. Therefore we
 | 
						|
 *	sort the instructions one after another into struct f_line. Results
 | 
						|
 *	and arguments of these instructions are implicitly put on a value
 | 
						|
 *	stack; e.g. the + operation just takes two arguments from the value
 | 
						|
 *	stack and puts the result on there.
 | 
						|
 *
 | 
						|
 *	3  Interpret
 | 
						|
 *	The given line is put on a custom execution stack. If needed (FI_CALL,
 | 
						|
 *	FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
 | 
						|
 *	of the stack; when that line finishes, the execution continues on the
 | 
						|
 *	older lines on the stack where it stopped before.
 | 
						|
 *
 | 
						|
 *	4  Same
 | 
						|
 *	On config reload, the filters have to be compared whether channel
 | 
						|
 *	reload is needed or not. The comparison is done by comparing the
 | 
						|
 *	struct f_line's recursively.
 | 
						|
 *
 | 
						|
 *	The main purpose of this rework was to improve filter performance
 | 
						|
 *	by making the interpreter non-recursive.
 | 
						|
 *
 | 
						|
 *	The other outcome is concentration of instruction definitions to
 | 
						|
 *	one place -- right here. You shall define your instruction only here
 | 
						|
 *	and nowhere else.
 | 
						|
 *
 | 
						|
 *	Beware. This file is interpreted by M4 macros. These macros
 | 
						|
 *	may be more stupid than you could imagine. If something strange
 | 
						|
 *	happens after changing this file, compare the results before and
 | 
						|
 *	after your change (see the Makefile to find out where the results are)
 | 
						|
 *	and see what really happened.
 | 
						|
 *
 | 
						|
 *	This file is not directly a C source code -> it is a generator input
 | 
						|
 *	for several C sources; every instruction block gets expanded into many
 | 
						|
 *	different places.
 | 
						|
 *
 | 
						|
 *	All the arguments are processed literally; if you need an argument including comma,
 | 
						|
 *	you have to quote it by [[ ... ]]
 | 
						|
 *
 | 
						|
 *	What is the syntax here?
 | 
						|
 *	m4_dnl	INST(FI_NOP, in, out) {			enum value, input args, output args
 | 
						|
 *	m4_dnl	  ARG(num, type);			argument, its id (in data fields) and type accessible by v1, v2, v3
 | 
						|
 *	m4_dnl	  ARG_ANY(num);				argument with no type check accessible by v1, v2, v3
 | 
						|
 *	m4_dnl	  VARARG;				variable-length argument list; accessible by vv(i) and whati->varcount
 | 
						|
 *	m4_dnl	  LINE(num, unused);			this argument has to be converted to its own f_line
 | 
						|
 *	m4_dnl	  SYMBOL;				symbol handed from config
 | 
						|
 *	m4_dnl	  STATIC_ATTR;				static attribute definition
 | 
						|
 *	m4_dnl	  DYNAMIC_ATTR;				dynamic attribute definition
 | 
						|
 *	m4_dnl	  RTC;					route table config
 | 
						|
 *	m4_dnl	  ACCESS_RTE;				this instruction needs route
 | 
						|
 *	m4_dnl	  ACCESS_EATTRS;			this instruction needs extended attributes
 | 
						|
 *
 | 
						|
 *	m4_dnl	  FID_MEMBER(				custom instruction member
 | 
						|
 *	m4_dnl	    C type,				for storage in structs
 | 
						|
 *	m4_dnl	    name,				how the member is named
 | 
						|
 *	m4_dnl	    comparator for same(),		if different, this should be TRUE (CAVEAT)
 | 
						|
 *	m4_dnl	    dump format string			debug -> format string for bvsnprintf
 | 
						|
 *	m4_dnl	    dump format args			appropriate args
 | 
						|
 *	m4_dnl	  )
 | 
						|
 *
 | 
						|
 *	m4_dnl	  RESULT(type, union-field, value);	putting this on value stack
 | 
						|
 *	m4_dnl	  RESULT_VAL(value-struct);		pass the struct f_val directly
 | 
						|
 *	m4_dnl	  RESULT_VOID;				return undef
 | 
						|
 *	m4_dnl	}
 | 
						|
 *
 | 
						|
 *	Also note that the { ... } blocks are not respected by M4 at all.
 | 
						|
 *	If you get weird unmatched-brace-pair errors, check what it generated and why.
 | 
						|
 *	What is really considered as one instruction is not the { ... } block
 | 
						|
 *	after m4_dnl INST() but all the code between them.
 | 
						|
 *
 | 
						|
 *	Other code is just copied into the interpreter part.
 | 
						|
 *
 | 
						|
 *	If you are satisfied with this, you don't need to read the following
 | 
						|
 *	detailed description of what is really done with the instruction definitions.
 | 
						|
 *
 | 
						|
 *	m4_dnl	Now let's look under the cover. The code between each INST()
 | 
						|
 *	m4_dnl	is copied to several places, namely these (numbered by the M4 diversions
 | 
						|
 *	m4_dnl	used in filter/decl.m4):
 | 
						|
 *
 | 
						|
 *	m4_dnl	(102)	struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
 | 
						|
 *	m4_dnl		{
 | 
						|
 *	m4_dnl		  ... (common code)
 | 
						|
 *	m4_dnl	(103)	  [[ put it here ]]
 | 
						|
 *	m4_dnl		  ...
 | 
						|
 *	m4_dnl		  if (all arguments are constant)
 | 
						|
 *	m4_dnl	(108)	    [[ put it here ]]
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	For writing directly to constructor argument list, use FID_NEW_ARGS.
 | 
						|
 *	m4_dnl	For computing something in constructor (103), use FID_NEW_BODY.
 | 
						|
 *	m4_dnl	For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
 | 
						|
 *
 | 
						|
 *	m4_dnl		struct f_inst {
 | 
						|
 *	m4_dnl		  ... (common fields)
 | 
						|
 *	m4_dnl		  union {
 | 
						|
 *	m4_dnl		    struct {
 | 
						|
 *	m4_dnl	(101)	      [[ put it here ]]
 | 
						|
 *	m4_dnl		    } i_FI_EXAMPLE;
 | 
						|
 *	m4_dnl		    ...
 | 
						|
 *	m4_dnl		  };
 | 
						|
 *	m4_dnl		};
 | 
						|
 *	m4_dnl	This structure is returned from constructor.
 | 
						|
 *	m4_dnl	For writing directly to this structure, use FID_STRUCT_IN.
 | 
						|
 *
 | 
						|
 *	m4_dnl		linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
 | 
						|
 *	m4_dnl		  ...
 | 
						|
 *	m4_dnl		    switch (what->fi_code) {
 | 
						|
 *	m4_dnl		      case FI_EXAMPLE:
 | 
						|
 *	m4_dnl	(105)		[[ put it here ]]
 | 
						|
 *	m4_dnl			break;
 | 
						|
 *	m4_dnl		    }
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	This is called when translating from struct f_inst to struct f_line_item.
 | 
						|
 *	m4_dnl	For accessing your custom instruction data, use following macros:
 | 
						|
 *	m4_dnl	  whati	-> for accessing (struct f_inst).i_FI_EXAMPLE
 | 
						|
 *	m4_dnl	  item	-> for accessing (struct f_line)[pos].i_FI_EXAMPLE
 | 
						|
 *	m4_dnl	For writing directly here, use FID_LINEARIZE_BODY.
 | 
						|
 *
 | 
						|
 *	m4_dnl	(107)	struct f_line_item {
 | 
						|
 *	m4_dnl		  ... (common fields)
 | 
						|
 *	m4_dnl		  union {
 | 
						|
 *	m4_dnl		    struct {
 | 
						|
 *	m4_dnl	(101)	      [[ put it here ]]
 | 
						|
 *	m4_dnl		    } i_FI_EXAMPLE;
 | 
						|
 *	m4_dnl		    ...
 | 
						|
 *	m4_dnl		  };
 | 
						|
 *	m4_dnl		};
 | 
						|
 *	m4_dnl	The same as FID_STRUCT_IN (101) but for the other structure.
 | 
						|
 *	m4_dnl	This structure is returned from the linearizer (105).
 | 
						|
 *	m4_dnl	For writing directly to this structure, use FID_LINE_IN.
 | 
						|
 *
 | 
						|
 *	m4_dnl		f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
 | 
						|
 *	m4_dnl		{
 | 
						|
 *	m4_dnl	(104)	  [[ put it here ]]
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	This code dumps the instruction on debug. Note that the argument
 | 
						|
 *	m4_dnl	is the linearized instruction; if the instruction has arguments,
 | 
						|
 *	m4_dnl	their code has already been linearized and their value is taken
 | 
						|
 *	m4_dnl	from the value stack.
 | 
						|
 *	m4_dnl	For writing directly here, use FID_DUMP_BODY.
 | 
						|
 *
 | 
						|
 *	m4_dnl		f_same(...)
 | 
						|
 *	m4_dnl		{
 | 
						|
 *	m4_dnl		  switch (f1_->fi_code) {
 | 
						|
 *	m4_dnl		    case FI_EXAMPLE:
 | 
						|
 *	m4_dnl	(106)	      [[ put it here ]]
 | 
						|
 *	m4_dnl		      break;
 | 
						|
 *	m4_dnl		  }
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	This code compares the two given instrucions (f1_ and f2_)
 | 
						|
 *	m4_dnl	on reconfigure. For accessing your custom instruction data,
 | 
						|
 *	m4_dnl	use macros f1 and f2.
 | 
						|
 *	m4_dnl	For writing directly here, use FID_SAME_BODY.
 | 
						|
 *
 | 
						|
 *	m4_dnl		f_add_lines(...)
 | 
						|
 *	m4_dnl		{
 | 
						|
 *	m4_dnl		  switch (what_->fi_code) {
 | 
						|
 *	m4_dnl		    case FI_EXAMPLE:
 | 
						|
 *	m4_dnl	(109)	      [[ put it here ]]
 | 
						|
 *	m4_dnl		      break;
 | 
						|
 *	m4_dnl		  }
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	This code adds new filter lines reachable from the instruction
 | 
						|
 *	m4_dnl	to the filter iterator line buffer. This is for instructions
 | 
						|
 *	m4_dnl  that changes conrol flow, like FI_CONDITION or FI_CALL, most
 | 
						|
 *	m4_dnl  instructions do not need to update it. It is used in generic
 | 
						|
 *	m4_dnl  filter iteration code (FILTER_ITERATE*). For accessing your
 | 
						|
 *	m4_dnl  custom instruction data, use macros f1 and f2. For writing
 | 
						|
 *	m4_dnl	directly here, use FID_ITERATE_BODY.
 | 
						|
 *
 | 
						|
 *	m4_dnl		interpret(...)
 | 
						|
 *	m4_dnl		{
 | 
						|
 *	m4_dnl		  switch (what->fi_code) {
 | 
						|
 *	m4_dnl		    case FI_EXAMPLE:
 | 
						|
 *	m4_dnl	(108)	      [[ put it here ]]
 | 
						|
 *	m4_dnl		      break;
 | 
						|
 *	m4_dnl		  }
 | 
						|
 *	m4_dnl		}
 | 
						|
 *	m4_dnl	This code executes the instruction. Every pre-defined macro
 | 
						|
 *	m4_dnl	resets the output here. For setting it explicitly,
 | 
						|
 *	m4_dnl	use FID_INTERPRET_BODY.
 | 
						|
 *	m4_dnl	This code is put on two places; one is the interpreter, the other
 | 
						|
 *	m4_dnl	is instruction constructor. If you need to distinguish between
 | 
						|
 *	m4_dnl	these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
 | 
						|
 *	m4_dnl	To address the difference between interpreter and constructor
 | 
						|
 *	m4_dnl	environments, there are several convenience macros defined:
 | 
						|
 *	m4_dnl	  runtime()	-> for spitting out runtime error like division by zero
 | 
						|
 *	m4_dnl	  RESULT(...)	-> declare result; may overwrite arguments
 | 
						|
 *	m4_dnl	  v1, v2, v3	-> positional arguments, may be overwritten by RESULT()
 | 
						|
 *	m4_dnl	  falloc(size)	-> allocate memory from the appropriate linpool
 | 
						|
 *	m4_dnl	  fpool		-> the current linpool
 | 
						|
 *	m4_dnl	  NEVER_CONSTANT-> don't generate pre-interpretation code at all
 | 
						|
 *	m4_dnl	  ACCESS_RTE	-> check that route is available, also NEVER_CONSTANT
 | 
						|
 *	m4_dnl	  ACCESS_EATTRS	-> pre-cache the eattrs; use only with ACCESS_RTE
 | 
						|
 *	m4_dnl	  f_rta_cow(fs)	-> function to call before any change to route should be done
 | 
						|
 *
 | 
						|
 *	m4_dnl	If you are stymied, see FI_CALL or FI_CONSTANT or just search for
 | 
						|
 *	m4_dnl	the mentioned macros in this file to see what is happening there in wild.
 | 
						|
 */
 | 
						|
 | 
						|
/* Binary operators */
 | 
						|
  INST(FI_ADD, 2, 1) {
 | 
						|
    ARG(1,T_INT);
 | 
						|
    ARG(2,T_INT);
 | 
						|
    RESULT(T_INT, i, v1.val.i + v2.val.i);
 | 
						|
  }
 | 
						|
  INST(FI_SUBTRACT, 2, 1) {
 | 
						|
    ARG(1,T_INT);
 | 
						|
    ARG(2,T_INT);
 | 
						|
    RESULT(T_INT, i, v1.val.i - v2.val.i);
 | 
						|
  }
 | 
						|
  INST(FI_MULTIPLY, 2, 1) {
 | 
						|
    ARG(1,T_INT);
 | 
						|
    ARG(2,T_INT);
 | 
						|
    RESULT(T_INT, i, v1.val.i * v2.val.i);
 | 
						|
  }
 | 
						|
  INST(FI_DIVIDE, 2, 1) {
 | 
						|
    ARG(1,T_INT);
 | 
						|
    ARG(2,T_INT);
 | 
						|
    if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
 | 
						|
    RESULT(T_INT, i, v1.val.i / v2.val.i);
 | 
						|
  }
 | 
						|
  INST(FI_AND, 1, 1) {
 | 
						|
    ARG(1,T_BOOL);
 | 
						|
    ARG_TYPE_STATIC(2,T_BOOL);
 | 
						|
    RESULT_TYPE(T_BOOL);
 | 
						|
 | 
						|
    if (v1.val.i)
 | 
						|
      LINE(2,0);
 | 
						|
    else
 | 
						|
      RESULT_VAL(v1);
 | 
						|
  }
 | 
						|
  INST(FI_OR, 1, 1) {
 | 
						|
    ARG(1,T_BOOL);
 | 
						|
    ARG_TYPE_STATIC(2,T_BOOL);
 | 
						|
    RESULT_TYPE(T_BOOL);
 | 
						|
 | 
						|
    if (!v1.val.i)
 | 
						|
      LINE(2,0);
 | 
						|
    else
 | 
						|
      RESULT_VAL(v1);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_PAIR_CONSTRUCT, 2, 1) {
 | 
						|
    ARG(1,T_INT);
 | 
						|
    ARG(2,T_INT);
 | 
						|
    uint u1 = v1.val.i;
 | 
						|
    uint u2 = v2.val.i;
 | 
						|
    if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
 | 
						|
      runtime( "Can't operate with value out of bounds in pair constructor" );
 | 
						|
    RESULT(T_PAIR, i, (u1 << 16) | u2);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_EC_CONSTRUCT, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG(2, T_INT);
 | 
						|
 | 
						|
    FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
 | 
						|
 | 
						|
    int ipv4_used;
 | 
						|
    u32 key, val;
 | 
						|
 | 
						|
    if (v1.type == T_INT) {
 | 
						|
      ipv4_used = 0; key = v1.val.i;
 | 
						|
    }
 | 
						|
    else if (v1.type == T_QUAD) {
 | 
						|
      ipv4_used = 1; key = v1.val.i;
 | 
						|
    }
 | 
						|
    /* IP->Quad implicit conversion */
 | 
						|
    else if (val_is_ip4(&v1)) {
 | 
						|
      ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
 | 
						|
 | 
						|
    val = v2.val.i;
 | 
						|
 | 
						|
    if (ecs == EC_GENERIC)
 | 
						|
      RESULT(T_EC, ec, ec_generic(key, val));
 | 
						|
    else if (ipv4_used)
 | 
						|
      if (val <= 0xFFFF)
 | 
						|
	RESULT(T_EC, ec, ec_ip4(ecs, key, val));
 | 
						|
      else
 | 
						|
	runtime("4-byte value %u can't be used with IP-address key in extended community", val);
 | 
						|
    else if (key < 0x10000)
 | 
						|
      RESULT(T_EC, ec, ec_as2(ecs, key, val));
 | 
						|
    else
 | 
						|
      if (val <= 0xFFFF)
 | 
						|
	RESULT(T_EC, ec, ec_as4(ecs, key, val));
 | 
						|
      else
 | 
						|
	runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_LC_CONSTRUCT, 3, 1) {
 | 
						|
    ARG(1, T_INT);
 | 
						|
    ARG(2, T_INT);
 | 
						|
    ARG(3, T_INT);
 | 
						|
    RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
 | 
						|
    VARARG;
 | 
						|
 | 
						|
    struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
 | 
						|
    pm->len = whati->varcount;
 | 
						|
 | 
						|
    for (uint i=0; i<whati->varcount; i++) {
 | 
						|
      switch (vv(i).type) {
 | 
						|
	case T_PATH_MASK_ITEM:
 | 
						|
	  if (vv(i).val.pmi.kind == PM_LOOP)
 | 
						|
	  {
 | 
						|
	    if (i == 0)
 | 
						|
	      runtime("Path mask iterator '+' cannot be first");
 | 
						|
 | 
						|
	    /* We want PM_LOOP as prefix operator */
 | 
						|
	    pm->item[i] = pm->item[i - 1];
 | 
						|
	    pm->item[i - 1] = vv(i).val.pmi;
 | 
						|
	    break;
 | 
						|
	  }
 | 
						|
 | 
						|
	  pm->item[i] = vv(i).val.pmi;
 | 
						|
	  break;
 | 
						|
 | 
						|
	case T_INT:
 | 
						|
	  pm->item[i] = (struct f_path_mask_item) {
 | 
						|
	    .asn = vv(i).val.i,
 | 
						|
	    .kind = PM_ASN,
 | 
						|
	  };
 | 
						|
	  break;
 | 
						|
 | 
						|
	case T_SET:
 | 
						|
	  if (vv(i).val.t->from.type != T_INT)
 | 
						|
	    runtime("Only integer sets allowed in path mask");
 | 
						|
 | 
						|
	  pm->item[i] = (struct f_path_mask_item) {
 | 
						|
	    .set = vv(i).val.t,
 | 
						|
	    .kind = PM_ASN_SET,
 | 
						|
	  };
 | 
						|
	  break;
 | 
						|
 | 
						|
	default:
 | 
						|
	  runtime( "Error resolving path mask template: value not an integer" );
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    RESULT(T_PATH_MASK, path_mask, pm);
 | 
						|
  }
 | 
						|
 | 
						|
/* Relational operators */
 | 
						|
 | 
						|
  INST(FI_NEQ, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    RESULT(T_BOOL, i, !val_same(&v1, &v2));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_EQ, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    RESULT(T_BOOL, i, val_same(&v1, &v2));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_LT, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    ARG_SAME_TYPE(1, 2);
 | 
						|
 | 
						|
    int i = val_compare(&v1, &v2);
 | 
						|
    if (i == F_CMP_ERROR)
 | 
						|
      runtime( "Can't compare values of incompatible types" );
 | 
						|
    RESULT(T_BOOL, i, (i == -1));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_LTE, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    ARG_SAME_TYPE(1, 2);
 | 
						|
 | 
						|
    int i = val_compare(&v1, &v2);
 | 
						|
    if (i == F_CMP_ERROR)
 | 
						|
      runtime( "Can't compare values of incompatible types" );
 | 
						|
    RESULT(T_BOOL, i, (i != 1));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_NOT, 1, 1) {
 | 
						|
    ARG(1,T_BOOL);
 | 
						|
    RESULT(T_BOOL, i, !v1.val.i);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_MATCH, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    int i = val_in_range(&v1, &v2);
 | 
						|
    if (i == F_CMP_ERROR)
 | 
						|
      runtime( "~ applied on unknown type pair" );
 | 
						|
    RESULT(T_BOOL, i, !!i);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_NOT_MATCH, 2, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    int i = val_in_range(&v1, &v2);
 | 
						|
    if (i == F_CMP_ERROR)
 | 
						|
      runtime( "!~ applied on unknown type pair" );
 | 
						|
    RESULT(T_BOOL, i, !i);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_DEFINED, 1, 1) {
 | 
						|
    ARG_ANY(1);
 | 
						|
    RESULT(T_BOOL, i, (v1.type != T_VOID) && !undef_value(v1));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_TYPE, 1, 1) {
 | 
						|
    ARG_ANY(1); /* There may be more types supporting this operation */
 | 
						|
    switch (v1.type)
 | 
						|
    {
 | 
						|
      case T_NET:
 | 
						|
	RESULT(T_ENUM_NETTYPE, i, v1.val.net->type);
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	runtime( "Can't determine type of this item" );
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_IS_V4, 1, 1) {
 | 
						|
    ARG(1, T_IP);
 | 
						|
    RESULT(T_BOOL, i, ipa_is_ip4(v1.val.ip));
 | 
						|
  }
 | 
						|
 | 
						|
  /* Set to indirect value prepared in v1 */
 | 
						|
  INST(FI_VAR_SET, 1, 0) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    ARG_ANY(1);
 | 
						|
    SYMBOL;
 | 
						|
    ARG_TYPE(1, sym->class & 0xff);
 | 
						|
 | 
						|
    fstk->vstk[curline.vbase + sym->offset] = v1;
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_VAR_GET, 0, 1) {
 | 
						|
    SYMBOL;
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    RESULT_TYPE(sym->class & 0xff);
 | 
						|
    RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CONSTANT, 0, 1) {
 | 
						|
    FID_MEMBER(
 | 
						|
      struct f_val,
 | 
						|
      val,
 | 
						|
      [[ !val_same(&(f1->val), &(f2->val)) ]],
 | 
						|
      "value %s",
 | 
						|
      val_dump(&(item->val))
 | 
						|
    );
 | 
						|
 | 
						|
    RESULT_TYPE(val.type);
 | 
						|
    RESULT_VAL(val);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CONDITION, 1, 0) {
 | 
						|
    ARG(1, T_BOOL);
 | 
						|
    if (v1.val.i)
 | 
						|
      LINE(2,0);
 | 
						|
    else
 | 
						|
      LINE(3,1);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_PRINT, 0, 0) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    VARARG;
 | 
						|
 | 
						|
    if (whati->varcount && !(fs->flags & FF_SILENT))
 | 
						|
      for (uint i=0; i<whati->varcount; i++)
 | 
						|
	val_format(&(vv(i)), &fs->buf);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_FLUSH, 0, 0) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    if (!(fs->flags & FF_SILENT))
 | 
						|
      /* After log_commit, the buffer is reset */
 | 
						|
      log_commit(*L_INFO, &fs->buf);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_DIE, 0, 0) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
 | 
						|
 | 
						|
    switch (whati->fret) {
 | 
						|
    case F_ACCEPT:	/* Should take care about turning ACCEPT into MODIFY */
 | 
						|
    case F_ERROR:
 | 
						|
    case F_REJECT:	/* Maybe print complete route along with reason to reject route? */
 | 
						|
      return fret;	/* We have to return now, no more processing. */
 | 
						|
    default:
 | 
						|
      bug( "unknown return type: Can't happen");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_RTA_GET, 0, 1) {
 | 
						|
    {
 | 
						|
      STATIC_ATTR;
 | 
						|
      ACCESS_RTE;
 | 
						|
      struct rta *rta = (*fs->rte)->attrs;
 | 
						|
 | 
						|
      switch (sa.sa_code)
 | 
						|
      {
 | 
						|
      case SA_FROM:	RESULT(sa.f_type, ip, rta->from); break;
 | 
						|
      case SA_GW:	RESULT(sa.f_type, ip, rta->nh.gw); break;
 | 
						|
      case SA_NET:	RESULT(sa.f_type, net, (*fs->rte)->net->n.addr); break;
 | 
						|
      case SA_PROTO:	RESULT(sa.f_type, s, (*fs->rte)->src->proto->name); break;
 | 
						|
      case SA_SOURCE:	RESULT(sa.f_type, i, rta->source); break;
 | 
						|
      case SA_SCOPE:	RESULT(sa.f_type, i, rta->scope); break;
 | 
						|
      case SA_DEST:	RESULT(sa.f_type, i, rta->dest); break;
 | 
						|
      case SA_IFNAME:	RESULT(sa.f_type, s, rta->nh.iface ? rta->nh.iface->name : ""); break;
 | 
						|
      case SA_IFINDEX:	RESULT(sa.f_type, i, rta->nh.iface ? rta->nh.iface->index : 0); break;
 | 
						|
      case SA_WEIGHT:	RESULT(sa.f_type, i, rta->nh.weight + 1); break;
 | 
						|
      case SA_PREF:	RESULT(sa.f_type, i, rta->pref); break;
 | 
						|
      case SA_GW_MPLS:	RESULT(sa.f_type, i, rta->nh.labels ? rta->nh.label[0] : MPLS_NULL); break;
 | 
						|
 | 
						|
      default:
 | 
						|
	bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_RTA_SET, 1, 0) {
 | 
						|
    ACCESS_RTE;
 | 
						|
    ARG_ANY(1);
 | 
						|
    STATIC_ATTR;
 | 
						|
    ARG_TYPE(1, sa.f_type);
 | 
						|
 | 
						|
    f_rta_cow(fs);
 | 
						|
    {
 | 
						|
      struct rta *rta = (*fs->rte)->attrs;
 | 
						|
 | 
						|
      switch (sa.sa_code)
 | 
						|
      {
 | 
						|
      case SA_FROM:
 | 
						|
	rta->from = v1.val.ip;
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_GW:
 | 
						|
	{
 | 
						|
	  ip_addr ip = v1.val.ip;
 | 
						|
	  struct iface *ifa = ipa_is_link_local(ip) ? rta->nh.iface : NULL;
 | 
						|
	  neighbor *n = neigh_find((*fs->rte)->src->proto, ip, ifa, 0);
 | 
						|
	  if (!n || (n->scope == SCOPE_HOST))
 | 
						|
	    runtime( "Invalid gw address" );
 | 
						|
 | 
						|
	  rta->dest = RTD_UNICAST;
 | 
						|
	  rta->nh.gw = ip;
 | 
						|
	  rta->nh.iface = n->iface;
 | 
						|
	  rta->nh.next = NULL;
 | 
						|
	  rta->hostentry = NULL;
 | 
						|
	  rta->nh.labels = 0;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_SCOPE:
 | 
						|
	rta->scope = v1.val.i;
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_DEST:
 | 
						|
	{
 | 
						|
	  int i = v1.val.i;
 | 
						|
	  if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
 | 
						|
	    runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
 | 
						|
 | 
						|
	  rta->dest = i;
 | 
						|
	  rta->nh.gw = IPA_NONE;
 | 
						|
	  rta->nh.iface = NULL;
 | 
						|
	  rta->nh.next = NULL;
 | 
						|
	  rta->hostentry = NULL;
 | 
						|
	  rta->nh.labels = 0;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_IFNAME:
 | 
						|
	{
 | 
						|
	  struct iface *ifa = if_find_by_name(v1.val.s);
 | 
						|
	  if (!ifa)
 | 
						|
	    runtime( "Invalid iface name" );
 | 
						|
 | 
						|
	  rta->dest = RTD_UNICAST;
 | 
						|
	  rta->nh.gw = IPA_NONE;
 | 
						|
	  rta->nh.iface = ifa;
 | 
						|
	  rta->nh.next = NULL;
 | 
						|
	  rta->hostentry = NULL;
 | 
						|
	  rta->nh.labels = 0;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_GW_MPLS:
 | 
						|
	{
 | 
						|
	  if (v1.val.i >= 0x100000)
 | 
						|
	    runtime( "Invalid MPLS label" );
 | 
						|
 | 
						|
	  if (v1.val.i != MPLS_NULL)
 | 
						|
	  {
 | 
						|
	    rta->nh.label[0] = v1.val.i;
 | 
						|
	    rta->nh.labels = 1;
 | 
						|
	  }
 | 
						|
	  else
 | 
						|
	    rta->nh.labels = 0;
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_WEIGHT:
 | 
						|
        {
 | 
						|
	  int i = v1.val.i;
 | 
						|
	  if (i < 1 || i > 256)
 | 
						|
	    runtime( "Setting weight value out of bounds" );
 | 
						|
	  if (rta->dest != RTD_UNICAST)
 | 
						|
	    runtime( "Setting weight needs regular nexthop " );
 | 
						|
 | 
						|
	  /* Set weight on all next hops */
 | 
						|
	  for (struct nexthop *nh = &rta->nh; nh; nh = nh->next)
 | 
						|
	    nh->weight = i - 1;
 | 
						|
        }
 | 
						|
	break;
 | 
						|
 | 
						|
      case SA_PREF:
 | 
						|
	rta->pref = v1.val.i;
 | 
						|
	break;
 | 
						|
 | 
						|
      default:
 | 
						|
	bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_EA_GET, 0, 1) {	/* Access to extended attributes */
 | 
						|
    DYNAMIC_ATTR;
 | 
						|
    ACCESS_RTE;
 | 
						|
    ACCESS_EATTRS;
 | 
						|
    RESULT_TYPE(da.f_type);
 | 
						|
    {
 | 
						|
      eattr *e = ea_find(*fs->eattrs, da.ea_code);
 | 
						|
 | 
						|
      if (!e) {
 | 
						|
	/* A special case: undefined as_path looks like empty as_path */
 | 
						|
	if (da.type == EAF_TYPE_AS_PATH) {
 | 
						|
	  RESULT_(T_PATH, ad, &null_adata);
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The same special case for int_set */
 | 
						|
	if (da.type == EAF_TYPE_INT_SET) {
 | 
						|
	  RESULT_(T_CLIST, ad, &null_adata);
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The same special case for ec_set */
 | 
						|
	if (da.type == EAF_TYPE_EC_SET) {
 | 
						|
	  RESULT_(T_ECLIST, ad, &null_adata);
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The same special case for lc_set */
 | 
						|
	if (da.type == EAF_TYPE_LC_SET) {
 | 
						|
	  RESULT_(T_LCLIST, ad, &null_adata);
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Undefined value */
 | 
						|
	RESULT_VOID;
 | 
						|
	break;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (e->type & EAF_TYPE_MASK) {
 | 
						|
      case EAF_TYPE_INT:
 | 
						|
	RESULT_(da.f_type, i, e->u.data);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_ROUTER_ID:
 | 
						|
	RESULT_(T_QUAD, i, e->u.data);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_OPAQUE:
 | 
						|
	RESULT_(T_ENUM_EMPTY, i, 0);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_IP_ADDRESS:
 | 
						|
	RESULT_(T_IP, ip, *((ip_addr *) e->u.ptr->data));
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_AS_PATH:
 | 
						|
	RESULT_(T_PATH, ad, e->u.ptr);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_BITFIELD:
 | 
						|
	RESULT_(T_BOOL, i, !!(e->u.data & (1u << da.bit)));
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_INT_SET:
 | 
						|
	RESULT_(T_CLIST, ad, e->u.ptr);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_EC_SET:
 | 
						|
	RESULT_(T_ECLIST, ad, e->u.ptr);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_LC_SET:
 | 
						|
	RESULT_(T_LCLIST, ad, e->u.ptr);
 | 
						|
	break;
 | 
						|
      case EAF_TYPE_UNDEF:
 | 
						|
	RESULT_VOID;
 | 
						|
	break;
 | 
						|
      default:
 | 
						|
	bug("Unknown dynamic attribute type");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_EA_SET, 1, 0) {
 | 
						|
    ACCESS_RTE;
 | 
						|
    ACCESS_EATTRS;
 | 
						|
    ARG_ANY(1);
 | 
						|
    DYNAMIC_ATTR;
 | 
						|
    ARG_TYPE(1, da.f_type);
 | 
						|
    {
 | 
						|
      struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
 | 
						|
 | 
						|
      l->next = NULL;
 | 
						|
      l->flags = EALF_SORTED;
 | 
						|
      l->count = 1;
 | 
						|
      l->attrs[0].id = da.ea_code;
 | 
						|
      l->attrs[0].flags = 0;
 | 
						|
      l->attrs[0].type = da.type | EAF_ORIGINATED | EAF_FRESH;
 | 
						|
 | 
						|
      switch (da.type) {
 | 
						|
      case EAF_TYPE_INT:
 | 
						|
      case EAF_TYPE_ROUTER_ID:
 | 
						|
	l->attrs[0].u.data = v1.val.i;
 | 
						|
	break;
 | 
						|
 | 
						|
      case EAF_TYPE_OPAQUE:
 | 
						|
	runtime( "Setting opaque attribute is not allowed" );
 | 
						|
	break;
 | 
						|
 | 
						|
      case EAF_TYPE_IP_ADDRESS:;
 | 
						|
	int len = sizeof(ip_addr);
 | 
						|
	struct adata *ad = lp_alloc(fs->pool, sizeof(struct adata) + len);
 | 
						|
	ad->length = len;
 | 
						|
	(* (ip_addr *) ad->data) = v1.val.ip;
 | 
						|
	l->attrs[0].u.ptr = ad;
 | 
						|
	break;
 | 
						|
 | 
						|
      case EAF_TYPE_AS_PATH:
 | 
						|
      case EAF_TYPE_INT_SET:
 | 
						|
      case EAF_TYPE_EC_SET:
 | 
						|
      case EAF_TYPE_LC_SET:
 | 
						|
	l->attrs[0].u.ptr = v1.val.ad;
 | 
						|
	break;
 | 
						|
 | 
						|
      case EAF_TYPE_BITFIELD:
 | 
						|
	{
 | 
						|
	  /* First, we have to find the old value */
 | 
						|
	  eattr *e = ea_find(*fs->eattrs, da.ea_code);
 | 
						|
	  u32 data = e ? e->u.data : 0;
 | 
						|
 | 
						|
	  if (v1.val.i)
 | 
						|
	    l->attrs[0].u.data = data | (1u << da.bit);
 | 
						|
	  else
 | 
						|
	    l->attrs[0].u.data = data & ~(1u << da.bit);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      default:
 | 
						|
	bug("Unknown dynamic attribute type");
 | 
						|
      }
 | 
						|
 | 
						|
      f_rta_cow(fs);
 | 
						|
      l->next = *fs->eattrs;
 | 
						|
      *fs->eattrs = l;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_EA_UNSET, 0, 0) {
 | 
						|
    DYNAMIC_ATTR;
 | 
						|
    ACCESS_RTE;
 | 
						|
    ACCESS_EATTRS;
 | 
						|
 | 
						|
    {
 | 
						|
      struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
 | 
						|
 | 
						|
      l->next = NULL;
 | 
						|
      l->flags = EALF_SORTED;
 | 
						|
      l->count = 1;
 | 
						|
      l->attrs[0].id = da.ea_code;
 | 
						|
      l->attrs[0].flags = 0;
 | 
						|
      l->attrs[0].type = EAF_TYPE_UNDEF | EAF_ORIGINATED | EAF_FRESH;
 | 
						|
      l->attrs[0].u.data = 0;
 | 
						|
 | 
						|
      f_rta_cow(fs);
 | 
						|
      l->next = *fs->eattrs;
 | 
						|
      *fs->eattrs = l;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_LENGTH, 1, 1) {	/* Get length of */
 | 
						|
    ARG_ANY(1);
 | 
						|
    switch(v1.type) {
 | 
						|
    case T_NET:    RESULT(T_INT, i, net_pxlen(v1.val.net)); break;
 | 
						|
    case T_PATH:   RESULT(T_INT, i, as_path_getlen(v1.val.ad)); break;
 | 
						|
    case T_CLIST:  RESULT(T_INT, i, int_set_get_size(v1.val.ad)); break;
 | 
						|
    case T_ECLIST: RESULT(T_INT, i, ec_set_get_size(v1.val.ad)); break;
 | 
						|
    case T_LCLIST: RESULT(T_INT, i, lc_set_get_size(v1.val.ad)); break;
 | 
						|
    default: runtime( "Prefix, path, clist or eclist expected" );
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_NET_SRC, 1, 1) { 	/* Get src prefix */
 | 
						|
    ARG(1, T_NET);
 | 
						|
 | 
						|
    net_addr_union *net = (void *) v1.val.net;
 | 
						|
    net_addr *src = falloc(sizeof(net_addr_ip6));
 | 
						|
    const byte *part;
 | 
						|
 | 
						|
    switch(v1.val.net->type) {
 | 
						|
    case NET_FLOW4:
 | 
						|
      part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
 | 
						|
      if (part)
 | 
						|
	net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
 | 
						|
      else
 | 
						|
	net_fill_ip4(src, IP4_NONE, 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case NET_FLOW6:
 | 
						|
      part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
 | 
						|
      if (part)
 | 
						|
	net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
 | 
						|
      else
 | 
						|
	net_fill_ip6(src, IP6_NONE, 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case NET_IP6_SADR:
 | 
						|
      net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      runtime( "Flow or SADR expected" );
 | 
						|
    }
 | 
						|
 | 
						|
    RESULT(T_NET, net, src);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_NET_DST, 1, 1) { 	/* Get dst prefix */
 | 
						|
    ARG(1, T_NET);
 | 
						|
 | 
						|
    net_addr_union *net = (void *) v1.val.net;
 | 
						|
    net_addr *dst = falloc(sizeof(net_addr_ip6));
 | 
						|
    const byte *part;
 | 
						|
 | 
						|
    switch(v1.val.net->type) {
 | 
						|
    case NET_FLOW4:
 | 
						|
      part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
 | 
						|
      if (part)
 | 
						|
	net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
 | 
						|
      else
 | 
						|
	net_fill_ip4(dst, IP4_NONE, 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case NET_FLOW6:
 | 
						|
      part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
 | 
						|
      if (part)
 | 
						|
	net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
 | 
						|
      else
 | 
						|
	net_fill_ip6(dst, IP6_NONE, 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case NET_IP6_SADR:
 | 
						|
      net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      runtime( "Flow or SADR expected" );
 | 
						|
    }
 | 
						|
 | 
						|
    RESULT(T_NET, net, dst);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ROA_MAXLEN, 1, 1) { 	/* Get ROA max prefix length */
 | 
						|
    ARG(1, T_NET);
 | 
						|
    if (!net_is_roa(v1.val.net))
 | 
						|
      runtime( "ROA expected" );
 | 
						|
 | 
						|
    RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
 | 
						|
      ((net_addr_roa4 *) v1.val.net)->max_pxlen :
 | 
						|
      ((net_addr_roa6 *) v1.val.net)->max_pxlen);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ROA_ASN, 1, 1) { 	/* Get ROA ASN */
 | 
						|
    ARG(1, T_NET);
 | 
						|
    if (!net_is_roa(v1.val.net))
 | 
						|
      runtime( "ROA expected" );
 | 
						|
 | 
						|
    RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
 | 
						|
      ((net_addr_roa4 *) v1.val.net)->asn :
 | 
						|
      ((net_addr_roa6 *) v1.val.net)->asn);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_IP, 1, 1) {	/* Convert prefix to ... */
 | 
						|
    ARG(1, T_NET);
 | 
						|
    RESULT(T_IP, ip, net_prefix(v1.val.net));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
 | 
						|
    ARG(1, T_NET);
 | 
						|
    if (!net_is_vpn(v1.val.net))
 | 
						|
      runtime( "VPN address expected" );
 | 
						|
    RESULT(T_RD, ec, net_rd(v1.val.net));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_AS_PATH_FIRST, 1, 1) {	/* Get first ASN from AS PATH */
 | 
						|
    ARG(1, T_PATH);
 | 
						|
    u32 as = 0;
 | 
						|
    as_path_get_first(v1.val.ad, &as);
 | 
						|
    RESULT(T_INT, i, as);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_AS_PATH_LAST, 1, 1) {		/* Get last ASN from AS PATH */
 | 
						|
    ARG(1, T_PATH);
 | 
						|
    u32 as = 0;
 | 
						|
    as_path_get_last(v1.val.ad, &as);
 | 
						|
    RESULT(T_INT, i, as);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_AS_PATH_LAST_NAG, 1, 1) {	/* Get last ASN from non-aggregated part of AS PATH */
 | 
						|
    ARG(1, T_PATH);
 | 
						|
    RESULT(T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_RETURN, 1, 1) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    /* Acquire the return value */
 | 
						|
    ARG_ANY(1);
 | 
						|
    uint retpos = fstk->vcnt;
 | 
						|
 | 
						|
    /* Drop every sub-block including ourselves */
 | 
						|
    do fstk->ecnt--;
 | 
						|
    while ((fstk->ecnt > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN));
 | 
						|
 | 
						|
    /* Now we are at the caller frame; if no such, try to convert to accept/reject. */
 | 
						|
    if (!fstk->ecnt)
 | 
						|
    {
 | 
						|
      if (fstk->vstk[retpos].type == T_BOOL)
 | 
						|
	return (fstk->vstk[retpos].val.i) ? F_ACCEPT :  F_REJECT;
 | 
						|
      else
 | 
						|
	runtime("Can't return non-bool from non-function");
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set the value stack position, overwriting the former implicit void */
 | 
						|
    fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
 | 
						|
 | 
						|
    /* Copy the return value */
 | 
						|
    RESULT_VAL(fstk->vstk[retpos]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CALL, 0, 1) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    SYMBOL;
 | 
						|
 | 
						|
    FID_SAME_BODY()
 | 
						|
      if (!(f1->sym->flags & SYM_FLAG_SAME))
 | 
						|
	return 0;
 | 
						|
 | 
						|
    FID_ITERATE_BODY()
 | 
						|
      BUFFER_PUSH(fit->lines) = whati->sym->function;
 | 
						|
 | 
						|
    FID_INTERPRET_BODY()
 | 
						|
 | 
						|
    /* Push the body on stack */
 | 
						|
    LINEX(sym->function);
 | 
						|
    curline.emask |= FE_RETURN;
 | 
						|
 | 
						|
    /* Before this instruction was called, there was the T_VOID
 | 
						|
     * automatic return value pushed on value stack and also
 | 
						|
     * sym->function->args function arguments. Setting the
 | 
						|
     * vbase to point to first argument. */
 | 
						|
    ASSERT(curline.ventry >= sym->function->args);
 | 
						|
    curline.ventry -= sym->function->args;
 | 
						|
    curline.vbase = curline.ventry;
 | 
						|
 | 
						|
    /* Storage for local variables */
 | 
						|
    f_vcnt_check_overflow(sym->function->vars);
 | 
						|
    memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
 | 
						|
    fstk->vcnt += sym->function->vars;
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_DROP_RESULT, 1, 0) {
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    ARG_ANY(1);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_SWITCH, 1, 0) {
 | 
						|
    ARG_ANY(1);
 | 
						|
 | 
						|
    FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
 | 
						|
 | 
						|
    FID_ITERATE_BODY()
 | 
						|
      tree_walk(whati->tree, f_add_tree_lines, fit);
 | 
						|
 | 
						|
    FID_INTERPRET_BODY()
 | 
						|
    const struct f_tree *t = find_tree(tree, &v1);
 | 
						|
    if (!t) {
 | 
						|
      v1.type = T_VOID;
 | 
						|
      t = find_tree(tree, &v1);
 | 
						|
      if (!t) {
 | 
						|
	debug( "No else statement?\n");
 | 
						|
	FID_HIC(,break,return NULL);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* It is actually possible to have t->data NULL */
 | 
						|
 | 
						|
    LINEX(t->data);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
 | 
						|
    ARG(1, T_IP);
 | 
						|
    ARG(2, T_INT);
 | 
						|
    RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
 | 
						|
      ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
 | 
						|
      ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_PATH_PREPEND, 2, 1) {	/* Path prepend */
 | 
						|
    ARG(1, T_PATH);
 | 
						|
    ARG(2, T_INT);
 | 
						|
    RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CLIST_ADD, 2, 1) {	/* (Extended) Community list add */
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    RESULT_TYPE(f1->type);
 | 
						|
 | 
						|
    if (v1.type == T_PATH)
 | 
						|
      runtime("Can't add to path");
 | 
						|
 | 
						|
    else if (v1.type == T_CLIST)
 | 
						|
    {
 | 
						|
      /* Community (or cluster) list */
 | 
						|
      struct f_val dummy;
 | 
						|
 | 
						|
      if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
 | 
						|
	RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
 | 
						|
      /* IP->Quad implicit conversion */
 | 
						|
      else if (val_is_ip4(&v2))
 | 
						|
	RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
 | 
						|
      else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
 | 
						|
	runtime("Can't add set");
 | 
						|
      else if (v2.type == T_CLIST)
 | 
						|
	RESULT_(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't add non-pair");
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_ECLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either EC or EC-set */
 | 
						|
      if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
 | 
						|
	runtime("Can't add set");
 | 
						|
      else if (v2.type == T_ECLIST)
 | 
						|
	RESULT_(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
 | 
						|
      else if (v2.type != T_EC)
 | 
						|
	runtime("Can't add non-ec");
 | 
						|
      else
 | 
						|
	RESULT_(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_LCLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either LC or LC-set */
 | 
						|
      if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
 | 
						|
	runtime("Can't add set");
 | 
						|
      else if (v2.type == T_LCLIST)
 | 
						|
	RESULT_(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
 | 
						|
      else if (v2.type != T_LC)
 | 
						|
	runtime("Can't add non-lc");
 | 
						|
      else
 | 
						|
	RESULT_(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    else
 | 
						|
      runtime("Can't add to non-[e|l]clist");
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CLIST_DEL, 2, 1) {	/* (Extended) Community list add or delete */
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    RESULT_TYPE(f1->type);
 | 
						|
 | 
						|
    if (v1.type == T_PATH)
 | 
						|
    {
 | 
						|
      const struct f_tree *set = NULL;
 | 
						|
      u32 key = 0;
 | 
						|
 | 
						|
      if (v2.type == T_INT)
 | 
						|
	key = v2.val.i;
 | 
						|
      else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
 | 
						|
	set = v2.val.t;
 | 
						|
      else
 | 
						|
	runtime("Can't delete non-integer (set)");
 | 
						|
 | 
						|
      RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, set, key, 0) ]]);
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_CLIST)
 | 
						|
    {
 | 
						|
      /* Community (or cluster) list */
 | 
						|
      struct f_val dummy;
 | 
						|
 | 
						|
      if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
 | 
						|
	RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
 | 
						|
      /* IP->Quad implicit conversion */
 | 
						|
      else if (val_is_ip4(&v2))
 | 
						|
	RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
 | 
						|
      else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
 | 
						|
	RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't delete non-pair");
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_ECLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either EC or EC-set */
 | 
						|
      if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
 | 
						|
	RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
 | 
						|
      else if (v2.type != T_EC)
 | 
						|
	runtime("Can't delete non-ec");
 | 
						|
      else
 | 
						|
	RESULT_(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_LCLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either LC or LC-set */
 | 
						|
      if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
 | 
						|
	RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
 | 
						|
      else if (v2.type != T_LC)
 | 
						|
	runtime("Can't delete non-lc");
 | 
						|
      else
 | 
						|
	RESULT_(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
 | 
						|
    }
 | 
						|
 | 
						|
    else
 | 
						|
      runtime("Can't delete in non-[e|l]clist");
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_CLIST_FILTER, 2, 1) {	/* (Extended) Community list add or delete */
 | 
						|
    ARG_ANY(1);
 | 
						|
    ARG_ANY(2);
 | 
						|
    RESULT_TYPE(f1->type);
 | 
						|
 | 
						|
    if (v1.type == T_PATH)
 | 
						|
    {
 | 
						|
      u32 key = 0;
 | 
						|
 | 
						|
      if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
 | 
						|
	RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, v2.val.t, key, 1) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't filter integer");
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_CLIST)
 | 
						|
    {
 | 
						|
      /* Community (or cluster) list */
 | 
						|
      struct f_val dummy;
 | 
						|
 | 
						|
      if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
 | 
						|
	RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't filter pair");
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_ECLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either EC or EC-set */
 | 
						|
      if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
 | 
						|
	RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't filter ec");
 | 
						|
    }
 | 
						|
 | 
						|
    else if (v1.type == T_LCLIST)
 | 
						|
    {
 | 
						|
      /* v2.val is either LC or LC-set */
 | 
						|
      if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
 | 
						|
	RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
 | 
						|
      else
 | 
						|
	runtime("Can't filter lc");
 | 
						|
    }
 | 
						|
 | 
						|
    else
 | 
						|
      runtime("Can't filter non-[e|l]clist");
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ROA_CHECK_IMPLICIT, 0, 1) {	/* ROA Check */
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    RTC(1);
 | 
						|
    struct rtable *table = rtc->table;
 | 
						|
    ACCESS_RTE;
 | 
						|
    ACCESS_EATTRS;
 | 
						|
    const net_addr *net = (*fs->rte)->net->n.addr;
 | 
						|
 | 
						|
    /* We ignore temporary attributes, probably not a problem here */
 | 
						|
    /* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
 | 
						|
    eattr *e = ea_find(*fs->eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
 | 
						|
 | 
						|
    if (!e || ((e->type & EAF_TYPE_MASK) != EAF_TYPE_AS_PATH))
 | 
						|
      runtime("Missing AS_PATH attribute");
 | 
						|
 | 
						|
    u32 as = 0;
 | 
						|
    as_path_get_last(e->u.ptr, &as);
 | 
						|
 | 
						|
    if (!table)
 | 
						|
      runtime("Missing ROA table");
 | 
						|
 | 
						|
    if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
 | 
						|
      runtime("Table type must be either ROA4 or ROA6");
 | 
						|
 | 
						|
    if (table->addr_type != (net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
 | 
						|
      RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
 | 
						|
    else
 | 
						|
      RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, net, as) ]]);
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ROA_CHECK_EXPLICIT, 2, 1) {	/* ROA Check */
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    ARG(1, T_NET);
 | 
						|
    ARG(2, T_INT);
 | 
						|
    RTC(3);
 | 
						|
    struct rtable *table = rtc->table;
 | 
						|
 | 
						|
    u32 as = v2.val.i;
 | 
						|
 | 
						|
    if (!table)
 | 
						|
      runtime("Missing ROA table");
 | 
						|
 | 
						|
    if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
 | 
						|
      runtime("Table type must be either ROA4 or ROA6");
 | 
						|
 | 
						|
    if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
 | 
						|
      RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
 | 
						|
    else
 | 
						|
      RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_FORMAT, 1, 0) {	/* Format */
 | 
						|
    ARG_ANY(1);
 | 
						|
    RESULT(T_STRING, s, val_format_str(fpool, &v1));
 | 
						|
  }
 | 
						|
 | 
						|
  INST(FI_ASSERT, 1, 0) {	/* Birdtest Assert */
 | 
						|
    NEVER_CONSTANT;
 | 
						|
    ARG(1, T_BOOL);
 | 
						|
 | 
						|
    FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
 | 
						|
 | 
						|
    ASSERT(s);
 | 
						|
 | 
						|
    if (!bt_assert_hook)
 | 
						|
      runtime("No bt_assert hook registered, can't assert");
 | 
						|
 | 
						|
    bt_assert_hook(v1.val.i, what);
 | 
						|
  }
 |