mirror of
				https://gitlab.labs.nic.cz/labs/bird.git
				synced 2024-05-11 16:54:54 +00:00 
			
		
		
		
	Add generic interface for generating and verifying MACs (message authentication codes). Replace multiple HMAC implementation with a generic one.
		
			
				
	
	
		
			276 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174)
 | |
|  *
 | |
|  *	(c) 2015 CZ.NIC z.s.p.o.
 | |
|  *
 | |
|  *	Based on the code from libucw-6.4
 | |
|  *	(c) 2008--2009 Martin Mares <mj@ucw.cz>
 | |
|  *
 | |
|  *	Based on the code from libgcrypt-1.2.3, which is
 | |
|  *	(c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
 | |
|  *
 | |
|  *	Can be freely distributed and used under the terms of the GNU GPL.
 | |
|  */
 | |
| 
 | |
| #include "lib/sha1.h"
 | |
| #include "lib/unaligned.h"
 | |
| 
 | |
| 
 | |
| void
 | |
| sha1_init(struct hash_context *CTX)
 | |
| {
 | |
|   struct sha1_context *ctx = (void *) CTX;
 | |
| 
 | |
|   ctx->h0 = 0x67452301;
 | |
|   ctx->h1 = 0xefcdab89;
 | |
|   ctx->h2 = 0x98badcfe;
 | |
|   ctx->h3 = 0x10325476;
 | |
|   ctx->h4 = 0xc3d2e1f0;
 | |
| 
 | |
|   ctx->nblocks = 0;
 | |
|   ctx->count = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transform the message X which consists of 16 32-bit-words
 | |
|  */
 | |
| static void
 | |
| sha1_transform(struct sha1_context *ctx, const byte *data)
 | |
| {
 | |
|   u32 a,b,c,d,e,tm;
 | |
|   u32 x[16];
 | |
| 
 | |
|   /* Get values from the chaining vars. */
 | |
|   a = ctx->h0;
 | |
|   b = ctx->h1;
 | |
|   c = ctx->h2;
 | |
|   d = ctx->h3;
 | |
|   e = ctx->h4;
 | |
| 
 | |
| #ifdef CPU_BIG_ENDIAN
 | |
|   memcpy(x, data, 64);
 | |
| #else
 | |
|   int i;
 | |
|   for (i = 0; i < 16; i++)
 | |
|     x[i] = get_u32(data+4*i);
 | |
| #endif
 | |
| 
 | |
| #define K1		0x5A827999L
 | |
| #define K2		0x6ED9EBA1L
 | |
| #define K3		0x8F1BBCDCL
 | |
| #define K4  		0xCA62C1D6L
 | |
| #define F1(x,y,z)	( z ^ ( x & ( y ^ z ) ) )
 | |
| #define F2(x,y,z)	( x ^ y ^ z )
 | |
| #define F3(x,y,z)	( ( x & y ) | ( z & ( x | y ) ) )
 | |
| #define F4(x,y,z)	( x ^ y ^ z )
 | |
| 
 | |
| #define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1)))
 | |
| 
 | |
| /* Bitwise rotation of an unsigned int to the left **/
 | |
| #define	ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits))))
 | |
| 
 | |
|   #define R(a, b, c, d, e, f, k, m)		\
 | |
|     do 						\
 | |
|     {						\
 | |
|       e += ROL(a, 5) + f(b, c, d) + k + m;	\
 | |
|       b = ROL(b, 30);				\
 | |
|     } while(0)
 | |
| 
 | |
|   R( a, b, c, d, e, F1, K1, x[ 0] );
 | |
|   R( e, a, b, c, d, F1, K1, x[ 1] );
 | |
|   R( d, e, a, b, c, F1, K1, x[ 2] );
 | |
|   R( c, d, e, a, b, F1, K1, x[ 3] );
 | |
|   R( b, c, d, e, a, F1, K1, x[ 4] );
 | |
|   R( a, b, c, d, e, F1, K1, x[ 5] );
 | |
|   R( e, a, b, c, d, F1, K1, x[ 6] );
 | |
|   R( d, e, a, b, c, F1, K1, x[ 7] );
 | |
|   R( c, d, e, a, b, F1, K1, x[ 8] );
 | |
|   R( b, c, d, e, a, F1, K1, x[ 9] );
 | |
|   R( a, b, c, d, e, F1, K1, x[10] );
 | |
|   R( e, a, b, c, d, F1, K1, x[11] );
 | |
|   R( d, e, a, b, c, F1, K1, x[12] );
 | |
|   R( c, d, e, a, b, F1, K1, x[13] );
 | |
|   R( b, c, d, e, a, F1, K1, x[14] );
 | |
|   R( a, b, c, d, e, F1, K1, x[15] );
 | |
|   R( e, a, b, c, d, F1, K1, M(16) );
 | |
|   R( d, e, a, b, c, F1, K1, M(17) );
 | |
|   R( c, d, e, a, b, F1, K1, M(18) );
 | |
|   R( b, c, d, e, a, F1, K1, M(19) );
 | |
|   R( a, b, c, d, e, F2, K2, M(20) );
 | |
|   R( e, a, b, c, d, F2, K2, M(21) );
 | |
|   R( d, e, a, b, c, F2, K2, M(22) );
 | |
|   R( c, d, e, a, b, F2, K2, M(23) );
 | |
|   R( b, c, d, e, a, F2, K2, M(24) );
 | |
|   R( a, b, c, d, e, F2, K2, M(25) );
 | |
|   R( e, a, b, c, d, F2, K2, M(26) );
 | |
|   R( d, e, a, b, c, F2, K2, M(27) );
 | |
|   R( c, d, e, a, b, F2, K2, M(28) );
 | |
|   R( b, c, d, e, a, F2, K2, M(29) );
 | |
|   R( a, b, c, d, e, F2, K2, M(30) );
 | |
|   R( e, a, b, c, d, F2, K2, M(31) );
 | |
|   R( d, e, a, b, c, F2, K2, M(32) );
 | |
|   R( c, d, e, a, b, F2, K2, M(33) );
 | |
|   R( b, c, d, e, a, F2, K2, M(34) );
 | |
|   R( a, b, c, d, e, F2, K2, M(35) );
 | |
|   R( e, a, b, c, d, F2, K2, M(36) );
 | |
|   R( d, e, a, b, c, F2, K2, M(37) );
 | |
|   R( c, d, e, a, b, F2, K2, M(38) );
 | |
|   R( b, c, d, e, a, F2, K2, M(39) );
 | |
|   R( a, b, c, d, e, F3, K3, M(40) );
 | |
|   R( e, a, b, c, d, F3, K3, M(41) );
 | |
|   R( d, e, a, b, c, F3, K3, M(42) );
 | |
|   R( c, d, e, a, b, F3, K3, M(43) );
 | |
|   R( b, c, d, e, a, F3, K3, M(44) );
 | |
|   R( a, b, c, d, e, F3, K3, M(45) );
 | |
|   R( e, a, b, c, d, F3, K3, M(46) );
 | |
|   R( d, e, a, b, c, F3, K3, M(47) );
 | |
|   R( c, d, e, a, b, F3, K3, M(48) );
 | |
|   R( b, c, d, e, a, F3, K3, M(49) );
 | |
|   R( a, b, c, d, e, F3, K3, M(50) );
 | |
|   R( e, a, b, c, d, F3, K3, M(51) );
 | |
|   R( d, e, a, b, c, F3, K3, M(52) );
 | |
|   R( c, d, e, a, b, F3, K3, M(53) );
 | |
|   R( b, c, d, e, a, F3, K3, M(54) );
 | |
|   R( a, b, c, d, e, F3, K3, M(55) );
 | |
|   R( e, a, b, c, d, F3, K3, M(56) );
 | |
|   R( d, e, a, b, c, F3, K3, M(57) );
 | |
|   R( c, d, e, a, b, F3, K3, M(58) );
 | |
|   R( b, c, d, e, a, F3, K3, M(59) );
 | |
|   R( a, b, c, d, e, F4, K4, M(60) );
 | |
|   R( e, a, b, c, d, F4, K4, M(61) );
 | |
|   R( d, e, a, b, c, F4, K4, M(62) );
 | |
|   R( c, d, e, a, b, F4, K4, M(63) );
 | |
|   R( b, c, d, e, a, F4, K4, M(64) );
 | |
|   R( a, b, c, d, e, F4, K4, M(65) );
 | |
|   R( e, a, b, c, d, F4, K4, M(66) );
 | |
|   R( d, e, a, b, c, F4, K4, M(67) );
 | |
|   R( c, d, e, a, b, F4, K4, M(68) );
 | |
|   R( b, c, d, e, a, F4, K4, M(69) );
 | |
|   R( a, b, c, d, e, F4, K4, M(70) );
 | |
|   R( e, a, b, c, d, F4, K4, M(71) );
 | |
|   R( d, e, a, b, c, F4, K4, M(72) );
 | |
|   R( c, d, e, a, b, F4, K4, M(73) );
 | |
|   R( b, c, d, e, a, F4, K4, M(74) );
 | |
|   R( a, b, c, d, e, F4, K4, M(75) );
 | |
|   R( e, a, b, c, d, F4, K4, M(76) );
 | |
|   R( d, e, a, b, c, F4, K4, M(77) );
 | |
|   R( c, d, e, a, b, F4, K4, M(78) );
 | |
|   R( b, c, d, e, a, F4, K4, M(79) );
 | |
| 
 | |
|   /* Update chaining vars. */
 | |
|   ctx->h0 += a;
 | |
|   ctx->h1 += b;
 | |
|   ctx->h2 += c;
 | |
|   ctx->h3 += d;
 | |
|   ctx->h4 += e;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the message digest with the contents of BUF with length LEN.
 | |
|  */
 | |
| void
 | |
| sha1_update(struct hash_context *CTX, const byte *buf, uint len)
 | |
| {
 | |
|   struct sha1_context *ctx = (void *) CTX;
 | |
| 
 | |
|   if (ctx->count)
 | |
|   {
 | |
|     /* Fill rest of internal buffer */
 | |
|     for (; len && ctx->count < SHA1_BLOCK_SIZE; len--)
 | |
|       ctx->buf[ctx->count++] = *buf++;
 | |
| 
 | |
|     if (ctx->count < SHA1_BLOCK_SIZE)
 | |
|       return;
 | |
| 
 | |
|     /* Process data from internal buffer */
 | |
|     sha1_transform(ctx, ctx->buf);
 | |
|     ctx->nblocks++;
 | |
|     ctx->count = 0;
 | |
|   }
 | |
| 
 | |
|   if (!len)
 | |
|     return;
 | |
| 
 | |
|   /* Process data from input buffer */
 | |
|   while (len >= SHA1_BLOCK_SIZE)
 | |
|   {
 | |
|     sha1_transform(ctx, buf);
 | |
|     ctx->nblocks++;
 | |
|     buf += SHA1_BLOCK_SIZE;
 | |
|     len -= SHA1_BLOCK_SIZE;
 | |
|   }
 | |
| 
 | |
|   /* Copy remaining data to internal buffer */
 | |
|   memcpy(ctx->buf, buf, len);
 | |
|   ctx->count = len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine final terminates the computation and returns the digest. The
 | |
|  * handle is prepared for a new cycle, but adding bytes to the handle will the
 | |
|  * destroy the returned buffer.
 | |
|  *
 | |
|  * Returns: 20 bytes representing the digest.
 | |
|  */
 | |
| byte *
 | |
| sha1_final(struct hash_context *CTX)
 | |
| {
 | |
|   struct sha1_context *ctx = (void *) CTX;
 | |
|   u32 t, msb, lsb;
 | |
| 
 | |
|   sha1_update(CTX, NULL, 0);	/* flush */
 | |
| 
 | |
|   t = ctx->nblocks;
 | |
|   /* multiply by 64 to make a byte count */
 | |
|   lsb = t << 6;
 | |
|   msb = t >> 26;
 | |
|   /* add the count */
 | |
|   t = lsb;
 | |
|   if ((lsb += ctx->count) < t)
 | |
|     msb++;
 | |
|   /* multiply by 8 to make a bit count */
 | |
|   t = lsb;
 | |
|   lsb <<= 3;
 | |
|   msb <<= 3;
 | |
|   msb |= t >> 29;
 | |
| 
 | |
|   if (ctx->count < 56)
 | |
|   {
 | |
|     /* enough room */
 | |
|     ctx->buf[ctx->count++] = 0x80; /* pad */
 | |
|     while (ctx->count < 56)
 | |
|       ctx->buf[ctx->count++] = 0;  /* pad */
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     /* need one extra block */
 | |
|     ctx->buf[ctx->count++] = 0x80; /* pad character */
 | |
|     while (ctx->count < 64)
 | |
|       ctx->buf[ctx->count++] = 0;
 | |
|     sha1_update(CTX, NULL, 0);	/* flush */
 | |
|     memset(ctx->buf, 0, 56); /* fill next block with zeroes */
 | |
|   }
 | |
| 
 | |
|   /* append the 64 bit count */
 | |
|   ctx->buf[56] = msb >> 24;
 | |
|   ctx->buf[57] = msb >> 16;
 | |
|   ctx->buf[58] = msb >>  8;
 | |
|   ctx->buf[59] = msb;
 | |
|   ctx->buf[60] = lsb >> 24;
 | |
|   ctx->buf[61] = lsb >> 16;
 | |
|   ctx->buf[62] = lsb >>  8;
 | |
|   ctx->buf[63] = lsb;
 | |
|   sha1_transform(ctx, ctx->buf);
 | |
| 
 | |
|   byte *p = ctx->buf;
 | |
| #define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
 | |
|   X(0);
 | |
|   X(1);
 | |
|   X(2);
 | |
|   X(3);
 | |
|   X(4);
 | |
| #undef X
 | |
| 
 | |
|   return ctx->buf;
 | |
| }
 |