mirror of
				https://gitlab.labs.nic.cz/labs/bird.git
				synced 2024-05-11 16:54:54 +00:00 
			
		
		
		
	- Unit Testing Framework (BirdTest) - Integration of BirdTest into the BIRD build system - Tests for several BIRD modules Based on squashed Pavel Tvrdik's int-test branch, updated for current int-new branch.
		
			
				
	
	
		
			583 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	BIRD Library -- IP address functions
 | |
|  *
 | |
|  *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
 | |
|  *
 | |
|  *	Can be freely distributed and used under the terms of the GNU GPL.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: IP addresses
 | |
|  *
 | |
|  * BIRD uses its own abstraction of IP address in order to share the same
 | |
|  * code for both IPv4 and IPv6. IP addresses are represented as entities
 | |
|  * of type &ip_addr which are never to be treated as numbers and instead
 | |
|  * they must be manipulated using the following functions and macros.
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "nest/bird.h"
 | |
| #include "lib/ip.h"
 | |
| 
 | |
| 
 | |
| int
 | |
| ip6_compare(ip6_addr a, ip6_addr b)
 | |
| {
 | |
|   int i;
 | |
|   for (i=0; i<4; i++)
 | |
|     if (a.addr[i] > b.addr[i])
 | |
|       return 1;
 | |
|     else if (a.addr[i] < b.addr[i])
 | |
|       return -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| ip6_addr
 | |
| ip6_mkmask(uint n)
 | |
| {
 | |
|   ip6_addr a;
 | |
|   int i;
 | |
| 
 | |
|   for (i=0; i<4; i++)
 | |
|   {
 | |
|     if (!n)
 | |
|       a.addr[i] = 0;
 | |
|     else if (n >= 32)
 | |
|     {
 | |
|       a.addr[i] = ~0;
 | |
|       n -= 32;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       a.addr[i] = u32_mkmask(n);
 | |
|       n = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return a;
 | |
| }
 | |
| 
 | |
| uint
 | |
| ip6_masklen(ip6_addr *a)
 | |
| {
 | |
|   int i, j, n;
 | |
| 
 | |
|   for (i=0, n=0; i<4; i++, n+=32)
 | |
|     if (a->addr[i] != ~0U)
 | |
|     {
 | |
|       j = u32_masklen(a->addr[i]);
 | |
|       if (j == 255)
 | |
| 	return j;
 | |
|       n += j;
 | |
|       while (++i < 4)
 | |
| 	if (a->addr[i])
 | |
| 	  return 255;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| int
 | |
| ip4_classify(ip4_addr ad)
 | |
| {
 | |
|   u32 a = _I(ad);
 | |
|   u32 b = a >> 24U;
 | |
| 
 | |
|   if (b && b <= 0xdf)
 | |
|   {
 | |
|     if (b == 0x7f)
 | |
|       return IADDR_HOST | SCOPE_HOST;
 | |
|     else if ((b == 0x0a) ||
 | |
| 	     ((a & 0xffff0000) == 0xc0a80000) ||
 | |
| 	     ((a & 0xfff00000) == 0xac100000))
 | |
|       return IADDR_HOST | SCOPE_SITE;
 | |
|     else
 | |
|       return IADDR_HOST | SCOPE_UNIVERSE;
 | |
|   }
 | |
| 
 | |
|   if (b >= 0xe0 && b <= 0xef)
 | |
|     return IADDR_MULTICAST | SCOPE_UNIVERSE;
 | |
| 
 | |
|   if (a == 0xffffffff)
 | |
|     return IADDR_BROADCAST | SCOPE_LINK;
 | |
| 
 | |
|   return IADDR_INVALID;
 | |
| }
 | |
| 
 | |
| int
 | |
| ip6_classify(ip6_addr *a)
 | |
| {
 | |
|   u32 x = a->addr[0];
 | |
| 
 | |
|   if ((x & 0xe0000000) == 0x20000000)		/* 2000::/3  Aggregatable Global Unicast Address */
 | |
|     return IADDR_HOST | SCOPE_UNIVERSE;
 | |
|   if ((x & 0xffc00000) == 0xfe800000)		/* fe80::/10 Link-Local Address */
 | |
|     return IADDR_HOST | SCOPE_LINK;
 | |
|   if ((x & 0xffc00000) == 0xfec00000)		/* fec0::/10 Site-Local Address */
 | |
|     return IADDR_HOST | SCOPE_SITE;
 | |
|   if ((x & 0xfe000000) == 0xfc000000)		/* fc00::/7  Unique Local Unicast Address (RFC 4193) */
 | |
|     return IADDR_HOST | SCOPE_SITE;
 | |
|   if ((x & 0xff000000) == 0xff000000)		/* ff00::/8  Multicast Address */
 | |
|   {
 | |
|     uint scope = (x >> 16) & 0x0f;
 | |
|     switch (scope)
 | |
|     {
 | |
|     case 1:  return IADDR_MULTICAST | SCOPE_HOST;
 | |
|     case 2:  return IADDR_MULTICAST | SCOPE_LINK;
 | |
|     case 5:  return IADDR_MULTICAST | SCOPE_SITE;
 | |
|     case 8:  return IADDR_MULTICAST | SCOPE_ORGANIZATION;
 | |
|     case 14: return IADDR_MULTICAST | SCOPE_UNIVERSE;
 | |
|     default: return IADDR_MULTICAST | SCOPE_UNDEFINED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!x && !a->addr[1])
 | |
|   {
 | |
|     u32 a2 = a->addr[2];
 | |
|     u32 a3 = a->addr[3];
 | |
| 
 | |
|     if (a2 == 0 && a3 == 1)
 | |
|       return IADDR_HOST | SCOPE_HOST;		/* Loopback address */
 | |
|     if (a2 == 0)
 | |
|       return ip4_classify(_MI4(a3));		/* IPv4 compatible addresses */
 | |
|     if (a2 == 0xffff)
 | |
|       return ip4_classify(_MI4(a3));		/* IPv4 mapped addresses */
 | |
| 
 | |
|     return IADDR_INVALID;
 | |
|   }
 | |
| 
 | |
|   return IADDR_HOST | SCOPE_UNDEFINED;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  Conversion of IPv6 address to presentation format and vice versa.
 | |
|  *  Heavily inspired by routines written by Paul Vixie for the BIND project
 | |
|  *  and of course by RFC 2373.
 | |
|  */
 | |
| 
 | |
| 
 | |
| char *
 | |
| ip4_ntop(ip4_addr a, char *b)
 | |
| {
 | |
|   u32 x = _I(a);
 | |
|   return b + bsprintf(b, "%d.%d.%d.%d", (x >> 24) & 0xff, (x >> 16) & 0xff, (x >> 8) & 0xff, x & 0xff);
 | |
| }
 | |
| 
 | |
| 
 | |
| char *
 | |
| ip6_ntop(ip6_addr a, char *b)
 | |
| {
 | |
|   u16 words[8];
 | |
|   int bestpos, bestlen, curpos, curlen, i;
 | |
| 
 | |
|   /* First of all, preprocess the address and find the longest run of zeros */
 | |
|   bestlen = bestpos = curpos = curlen = 0;
 | |
|   for (i=0; i<8; i++)
 | |
|   {
 | |
|     u32 x = a.addr[i/2];
 | |
|     words[i] = ((i%2) ? x : (x >> 16)) & 0xffff;
 | |
|     if (words[i])
 | |
|       curlen = 0;
 | |
|     else
 | |
|     {
 | |
|       if (!curlen)
 | |
| 	curpos = i;
 | |
|       curlen++;
 | |
|       if (curlen > bestlen)
 | |
|       {
 | |
| 	bestpos = curpos;
 | |
| 	bestlen = curlen;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (bestlen < 2)
 | |
|     bestpos = -1;
 | |
| 
 | |
|   /* Is it an encapsulated IPv4 address? */
 | |
|   if (!bestpos && ((bestlen == 5 && a.addr[2] == 0xffff) || (bestlen == 6)))
 | |
|   {
 | |
|     u32 x = a.addr[3];
 | |
|     b += bsprintf(b, "::%s%d.%d.%d.%d",
 | |
| 		  a.addr[2] ? "ffff:" : "",
 | |
| 		  (x >> 24) & 0xff,
 | |
| 		  (x >> 16) & 0xff,
 | |
| 		  (x >> 8) & 0xff,
 | |
| 		  x & 0xff);
 | |
|     return b;
 | |
|   }
 | |
| 
 | |
|   /* Normal IPv6 formatting, compress the largest sequence of zeros */
 | |
|   for (i=0; i<8; i++)
 | |
|   {
 | |
|     if (i == bestpos)
 | |
|     {
 | |
|       i += bestlen - 1;
 | |
|       *b++ = ':';
 | |
|       if (i == 7)
 | |
| 	*b++ = ':';
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (i)
 | |
| 	*b++ = ':';
 | |
|       b += bsprintf(b, "%x", words[i]);
 | |
|     }
 | |
|   }
 | |
|   *b = 0;
 | |
|   return b;
 | |
| }
 | |
| 
 | |
| int
 | |
| ip4_pton(const char *a, ip4_addr *o)
 | |
| {
 | |
|   int i;
 | |
|   unsigned long int l;
 | |
|   u32 ia = 0;
 | |
| 
 | |
|   i=4;
 | |
|   while (i--)
 | |
|   {
 | |
|     char *d, *c = strchr(a, '.');
 | |
|     if (!c != !i)
 | |
|       return 0;
 | |
|     l = strtoul(a, &d, 10);
 | |
|     if (((d != c) && *d) || (l > 255))
 | |
|       return 0;
 | |
|     ia = (ia << 8) | l;
 | |
|     if (c)
 | |
|       c++;
 | |
|     a = c;
 | |
|   }
 | |
|   *o = ip4_from_u32(ia);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| ip6_pton(const char *a, ip6_addr *o)
 | |
| {
 | |
|   u16 words[8];
 | |
|   int i, j, k, l, hfil;
 | |
|   const char *start;
 | |
| 
 | |
|   if (a[0] == ':')			/* Leading :: */
 | |
|   {
 | |
|     if (a[1] != ':')
 | |
|       return 0;
 | |
|     a++;
 | |
|   }
 | |
| 
 | |
|   hfil = -1;
 | |
|   i = 0;
 | |
|   while (*a)
 | |
|   {
 | |
|     if (*a == ':')			/* :: */
 | |
|     {
 | |
|       if (hfil >= 0)
 | |
| 	return 0;
 | |
| 
 | |
|       hfil = i;
 | |
|       a++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     j = 0;
 | |
|     l = 0;
 | |
|     start = a;
 | |
|     for (;;)
 | |
|     {
 | |
|       if (*a >= '0' && *a <= '9')
 | |
| 	k = *a++ - '0';
 | |
|       else if (*a >= 'A' && *a <= 'F')
 | |
| 	k = *a++ - 'A' + 10;
 | |
|       else if (*a >= 'a' && *a <= 'f')
 | |
| 	k = *a++ - 'a' + 10;
 | |
|       else
 | |
| 	break;
 | |
| 
 | |
|       j = (j << 4) + k;
 | |
|       if (j >= 0x10000 || ++l > 4)
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (*a == ':' && a[1])
 | |
|       a++;
 | |
|     else if (*a == '.' && (i == 6 || (i < 6 && hfil >= 0)))
 | |
|     {				/* Embedded IPv4 address */
 | |
|       ip4_addr x;
 | |
|       if (!ip4_pton(start, &x))
 | |
| 	return 0;
 | |
|       words[i++] = _I(x) >> 16;
 | |
|       words[i++] = _I(x);
 | |
|       break;
 | |
|     }
 | |
|     else if (*a)
 | |
|       return 0;
 | |
| 
 | |
|     if (i >= 8)
 | |
|       return 0;
 | |
| 
 | |
|     words[i++] = j;
 | |
|   }
 | |
| 
 | |
|   /* Replace :: with an appropriate number of zeros */
 | |
|   if (hfil >= 0)
 | |
|   {
 | |
|     j = 8 - i;
 | |
|     for (i=7; i-j >= hfil; i--)
 | |
|       words[i] = words[i-j];
 | |
|     for (; i>=hfil; i--)
 | |
|       words[i] = 0;
 | |
|   }
 | |
| 
 | |
|   /* Convert the address to ip6_addr format */
 | |
|   for (i=0; i<4; i++)
 | |
|     o->addr[i] = (words[2*i] << 16) | words[2*i+1];
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * ip_scope_text - get textual representation of address scope
 | |
|  * @scope: scope (%SCOPE_xxx)
 | |
|  *
 | |
|  * Returns a pointer to a textual name of the scope given.
 | |
|  */
 | |
| char *
 | |
| ip_scope_text(uint scope)
 | |
| {
 | |
|   static char *scope_table[] = { "host", "link", "site", "org", "univ", "undef" };
 | |
| 
 | |
|   if (scope > SCOPE_UNDEFINED)
 | |
|     return "?";
 | |
|   else
 | |
|     return scope_table[scope];
 | |
| }
 | |
| 
 | |
| ip4_addr
 | |
| ip4_class_mask(ip4_addr ad)
 | |
| {
 | |
|   u32 m, a = _I(ad);
 | |
| 
 | |
|   if (a == 0x00000000)
 | |
|     m = 0x00000000;
 | |
|   else if (a < 0x80000000)
 | |
|     m = 0xff000000;
 | |
|   else if (a < 0xc0000000)
 | |
|     m = 0xffff0000;
 | |
|   else
 | |
|     m = 0xffffff00;
 | |
|   if (a & ~m)
 | |
|     m = 0xffffffff;
 | |
| 
 | |
|   return _MI4(m);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /**
 | |
|  * ipa_equal - compare two IP addresses for equality
 | |
|  * @x: IP address
 | |
|  * @y: IP address
 | |
|  *
 | |
|  * ipa_equal() returns 1 if @x and @y represent the same IP address, else 0.
 | |
|  */
 | |
| int ipa_equal(ip_addr x, ip_addr y) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_nonzero - test if an IP address is defined
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * ipa_nonzero returns 1 if @x is a defined IP address (not all bits are zero),
 | |
|  * else 0.
 | |
|  *
 | |
|  * The undefined all-zero address is reachable as a |IPA_NONE| macro.
 | |
|  */
 | |
| int ipa_nonzero(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_and - compute bitwise and of two IP addresses
 | |
|  * @x: IP address
 | |
|  * @y: IP address
 | |
|  *
 | |
|  * This function returns a bitwise and of @x and @y. It's primarily
 | |
|  * used for network masking.
 | |
|  */
 | |
| ip_addr ipa_and(ip_addr x, ip_addr y) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_or - compute bitwise or of two IP addresses
 | |
|  * @x: IP address
 | |
|  * @y: IP address
 | |
|  *
 | |
|  * This function returns a bitwise or of @x and @y.
 | |
|  */
 | |
| ip_addr ipa_or(ip_addr x, ip_addr y) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_xor - compute bitwise xor of two IP addresses
 | |
|  * @x: IP address
 | |
|  * @y: IP address
 | |
|  *
 | |
|  * This function returns a bitwise xor of @x and @y.
 | |
|  */
 | |
| ip_addr ipa_xor(ip_addr x, ip_addr y) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_not - compute bitwise negation of two IP addresses
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * This function returns a bitwise negation of @x.
 | |
|  */
 | |
| ip_addr ipa_not(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_mkmask - create a netmask
 | |
|  * @x: prefix length
 | |
|  *
 | |
|  * This function returns an &ip_addr corresponding of a netmask
 | |
|  * of an address prefix of size @x.
 | |
|  */
 | |
| ip_addr ipa_mkmask(int x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_masklen - calculate netmask length
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * This function checks whether @x represents a valid netmask and
 | |
|  * returns the size of the associate network prefix or -1 for invalid
 | |
|  * mask.
 | |
|  */
 | |
| int ipa_masklen(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_hash - hash IP addresses
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * ipa_hash() returns a 16-bit hash value of the IP address @x.
 | |
|  */
 | |
| int ipa_hash(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_hton - convert IP address to network order
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * Converts the IP address @x to the network byte order.
 | |
|  *
 | |
|  * Beware, this is a macro and it alters the argument!
 | |
|  */
 | |
| void ipa_hton(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_ntoh - convert IP address to host order
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * Converts the IP address @x from the network byte order.
 | |
|  *
 | |
|  * Beware, this is a macro and it alters the argument!
 | |
|  */
 | |
| void ipa_ntoh(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_classify - classify an IP address
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * ipa_classify() returns an address class of @x, that is a bitwise or
 | |
|  * of address type (%IADDR_INVALID, %IADDR_HOST, %IADDR_BROADCAST, %IADDR_MULTICAST)
 | |
|  * with address scope (%SCOPE_HOST to %SCOPE_UNIVERSE) or -1 (%IADDR_INVALID)
 | |
|  * for an invalid address.
 | |
|  */
 | |
| int ipa_classify(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ip4_class_mask - guess netmask according to address class
 | |
|  * @x: IPv4 address
 | |
|  *
 | |
|  * This function (available in IPv4 version only) returns a
 | |
|  * network mask according to the address class of @x. Although
 | |
|  * classful addressing is nowadays obsolete, there still live
 | |
|  * routing protocols transferring no prefix lengths nor netmasks
 | |
|  * and this function could be useful to them.
 | |
|  */
 | |
| ip4_addr ip4_class_mask(ip4_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_from_u32 - convert IPv4 address to an integer
 | |
|  * @x: IP address
 | |
|  *
 | |
|  * This function takes an IPv4 address and returns its numeric
 | |
|  * representation.
 | |
|  */
 | |
| u32 ipa_from_u32(ip_addr x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_to_u32 - convert integer to IPv4 address
 | |
|  * @x: a 32-bit integer
 | |
|  *
 | |
|  * ipa_to_u32() takes a numeric representation of an IPv4 address
 | |
|  * and converts it to the corresponding &ip_addr.
 | |
|  */
 | |
| ip_addr ipa_to_u32(u32 x) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_compare - compare two IP addresses for order
 | |
|  * @x: IP address
 | |
|  * @y: IP address
 | |
|  *
 | |
|  * The ipa_compare() function takes two IP addresses and returns
 | |
|  * -1 if @x is less than @y in canonical ordering (lexicographical
 | |
|  * order of the bit strings), 1 if @x is greater than @y and 0
 | |
|  * if they are the same.
 | |
|  */
 | |
| int ipa_compare(ip_addr x, ip_addr y) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ipa_build6 - build an IPv6 address from parts
 | |
|  * @a1: part #1
 | |
|  * @a2: part #2
 | |
|  * @a3: part #3
 | |
|  * @a4: part #4
 | |
|  *
 | |
|  * ipa_build() takes @a1 to @a4 and assembles them to a single IPv6
 | |
|  * address. It's used for example when a protocol wants to bind its
 | |
|  * socket to a hard-wired multicast address.
 | |
|  */
 | |
| ip_addr ipa_build6(u32 a1, u32 a2, u32 a3, u32 a4) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ip_ntop - convert IP address to textual representation
 | |
|  * @a: IP address
 | |
|  * @buf: buffer of size at least %STD_ADDRESS_P_LENGTH
 | |
|  *
 | |
|  * This function takes an IP address and creates its textual
 | |
|  * representation for presenting to the user.
 | |
|  */
 | |
| char *ip_ntop(ip_addr a, char *buf) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ip_ntox - convert IP address to hexadecimal representation
 | |
|  * @a: IP address
 | |
|  * @buf: buffer of size at least %STD_ADDRESS_P_LENGTH
 | |
|  *
 | |
|  * This function takes an IP address and creates its hexadecimal
 | |
|  * textual representation. Primary use: debugging dumps.
 | |
|  */
 | |
| char *ip_ntox(ip_addr a, char *buf) { DUMMY }
 | |
| 
 | |
| /**
 | |
|  * ip_pton - parse textual representation of IP address
 | |
|  * @a: textual representation
 | |
|  * @o: where to put the resulting address
 | |
|  *
 | |
|  * This function parses a textual IP address representation and
 | |
|  * stores the decoded address to a variable pointed to by @o.
 | |
|  * Returns 0 if a parse error has occurred, else 0.
 | |
|  */
 | |
| int ip_pton(char *a, ip_addr *o) { DUMMY }
 | |
| 
 | |
| #endif
 |