Deleted various redundant MIBs

This commit is contained in:
Chris A. Evans
2016-07-21 15:32:18 -05:00
parent 75f95caec6
commit 8d09c3ef4a
24 changed files with 0 additions and 35145 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,113 +0,0 @@
ADSL-TC-MIB DEFINITIONS ::= BEGIN
IMPORTS
transmission,
MODULE-IDENTITY, Gauge32 FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC;
adsltcmib MODULE-IDENTITY
LAST-UPDATED "9908190000Z"
ORGANIZATION "IETF ADSL MIB Working Group"
CONTACT-INFO
"
Gregory Bathrick
AG Communication Systems
A Subsidiary of Lucent Technologies
2500 W Utopia Rd.
Phoenix, AZ 85027 USA
Tel: +1 602-582-7679
Fax: +1 602-582-7697
E-mail: bathricg@agcs.com
Faye Ly
Copper Mountain Networks
Norcal Office
2470 Embarcadero Way
Palo Alto, CA 94303
Tel: +1 650-858-8500
Fax: +1 650-858-8085
E-Mail: faye@coppermountain.com
IETF ADSL MIB Working Group (adsl@xlist.agcs.com)
"
DESCRIPTION
"The MIB module which provides a ADSL
Line Coding Textual Convention to be used
by ADSL Lines."
-- Revision history
REVISION "9908190000Z" -- 19 August 1999, midnight
DESCRIPTION "Initial Version, published as RFC 2662"
::= { transmission 94 2 } -- adslMIB 2
AdslLineCodingType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used as the syntax for the ADSL
Line Code."
SYNTAX INTEGER {
other(1),-- none of the following
dmt (2), -- Discrete MultiTone
cap (3), -- Carrierless Amplitude & Phase modulation
qam (4) -- Quadrature Amplitude Modulation
}
AdslPerfCurrDayCount ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A counter associated with interface performance
measurements in a current 1-day (24 hour) measurement
interval.
The value of this counter starts at zero at the
beginning of an interval and is increased when
associated events occur, until the end of the
1-day interval. At that time the value of the
counter is stored in the previous 1-day history
interval, if available, and the current interval
counter is restarted at zero.
In the case where the agent has no valid data available
for this interval the corresponding object
instance is not available and upon a retrieval
request a corresponding error message shall be
returned to indicate that this instance does
not exist (for example, a noSuchName error for
SNMPv1 and a noSuchInstance for SNMPv2 GET
operation)."
SYNTAX Gauge32
AdslPerfPrevDayCount ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A counter associated with interface performance
measurements during the most previous 1-day (24 hour)
measurement interval. The value of this counter is
equal to the value of the current day counter at
the end of its most recent interval.
In the case where the agent has no valid data available
for this interval the corresponding object
instance is not available and upon a retrieval
request a corresponding error message shall be
returned to indicate that this instance does
not exist (for example, a noSuchName error for
SNMPv1 and a noSuchInstance for SNMPv2 GET
operation)."
SYNTAX Gauge32
AdslPerfTimeElapsed ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The number of seconds that have elapsed since
the beginning of the current measurement period.
If, for some reason, such as an adjustment in the
system's time-of-day clock, the current interval
exceeds the maximum value, the agent will return
the maximum value."
SYNTAX Gauge32
END

File diff suppressed because it is too large Load Diff

View File

@@ -1,130 +0,0 @@
IANA-ADDRESS-FAMILY-NUMBERS-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
mib-2 FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC;
ianaAddressFamilyNumbers MODULE-IDENTITY
LAST-UPDATED "200203140000Z" -- March 14, 2002
ORGANIZATION "IANA"
CONTACT-INFO
"Postal: Internet Assigned Numbers Authority
Internet Corporation for Assigned Names
and Numbers
4676 Admiralty Way, Suite 330
Marina del Rey, CA 90292-6601
USA
Tel: +1 310-823-9358
E-Mail: iana&iana.org"
DESCRIPTION
"The MIB module defines the AddressFamilyNumbers
textual convention."
-- revision history
REVISION "200203140000Z" -- March 14, 2002
DESCRIPTION "AddressFamilyNumbers assignment 22 to
fibreChannelWWPN. AddressFamilyNumbers
assignment 23 to fibreChannelWWNN.
AddressFamilyNumers assignment 24 to gwid."
REVISION "200009080000Z" -- September 8, 2000
DESCRIPTION "AddressFamilyNumbers assignment 19 to xtpOverIpv4.
AddressFamilyNumbers assignment 20 to xtpOverIpv6.
AddressFamilyNumbers assignment 21 to xtpNativeModeXTP."
REVISION "200003010000Z" -- March 1, 2000
DESCRIPTION "AddressFamilyNumbers assignment 17 to distinguishedName.
AddressFamilyNumbers assignment 18 to asNumber."
REVISION "200002040000Z" -- February 4, 2000
DESCRIPTION "AddressFamilyNumbers assignment 16 to dns."
REVISION "9908260000Z" -- August 26, 1999
DESCRIPTION "Initial version, published as RFC 2677."
::= { mib-2 72 }
AddressFamilyNumbers ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The definition of this textual convention with the
addition of newly assigned values is published
periodically by the IANA, in either the Assigned
Numbers RFC, or some derivative of it specific to
Internet Network Management number assignments.
(The latest arrangements can be obtained by
contacting the IANA.)
The enumerations are described as:
other(0), -- none of the following
ipV4(1), -- IP Version 4
ipV6(2), -- IP Version 6
nsap(3), -- NSAP
hdlc(4), -- (8-bit multidrop)
bbn1822(5),
all802(6), -- (includes all 802 media
-- plus Ethernet 'canonical format')
e163(7),
e164(8), -- (SMDS, Frame Relay, ATM)
f69(9), -- (Telex)
x121(10), -- (X.25, Frame Relay)
ipx(11), -- IPX (Internet Protocol Exchange)
appleTalk(12), -- Apple Talk
decnetIV(13), -- DEC Net Phase IV
banyanVines(14), -- Banyan Vines
e164withNsap(15),
-- (E.164 with NSAP format subaddress)
dns(16), -- (Domain Name System)
distinguishedName(17), -- (Distinguished Name, per X.500)
asNumber(18), -- (16-bit quantity, per the AS number space)
xtpOverIpv4(19), -- XTP over IP version 4
xtpOverIpv6(20), -- XTP over IP version 6
xtpNativeModeXTP(21), -- XTP native mode XTP
fibreChannelWWPN(22), -- Fibre Channel World-Wide Port Name
fibreChannelWWNN(23), -- Fibre Channel World-Wide Node Name
gwid(24), -- Gateway Identifier
afi(25), -- AFI for L2VPN information
reserved(65535)
Requests for new values should be made to IANA via
email (iana&iana.org)."
SYNTAX INTEGER {
other(0),
ipV4(1),
ipV6(2),
nsap(3),
hdlc(4),
bbn1822(5),
all802(6),
e163(7),
e164(8),
f69(9),
x121(10),
ipx(11),
appleTalk(12),
decnetIV(13),
banyanVines(14),
e164withNsap(15),
dns(16),
distinguishedName(17), -- (Distinguished Name, per X.500)
asNumber(18), -- (16-bit quantity, per the AS number space)
xtpOverIpv4(19),
xtpOverIpv6(20),
xtpNativeModeXTP(21),
fibreChannelWWPN(22),
fibreChannelWWNN(23),
gwid(24),
afi(25),
reserved(65535)
}
END

View File

@@ -1,314 +0,0 @@
IANAifType-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC;
ianaifType MODULE-IDENTITY
LAST-UPDATED "200105110000Z" -- May 11, 2001
ORGANIZATION "IANA"
CONTACT-INFO " Internet Assigned Numbers Authority
Postal: ICANN
4676 Admiralty Way, Suite 330
Marina del Rey, CA 90292
Tel: +1 310 823 9358
E-Mail: iana@iana.org"
DESCRIPTION "This MIB module defines the IANAifType Textual
Convention, and thus the enumerated values of
the ifType object defined in MIB-II's ifTable."
REVISION "200105110000Z" -- May 11, 2001
DESCRIPTION "Registration of new IANAifType
197."
REVISION "200101120000Z" -- Jan 12, 2001
DESCRIPTION "Registration of new IANAifTypes
195 and 196."
REVISION "200012190000Z" -- Dec 19, 2000
DESCRIPTION "Registration of new IANAifTypes
193 and 194."
REVISION "200012070000Z" -- Dec 07, 2000
DESCRIPTION "Registration of new IANAifTypes
191 and 192."
REVISION "200012040000Z" -- Dec 04, 2000
DESCRIPTION "Registration of new IANAifType
190."
REVISION "200010170000Z" -- Oct 17, 2000
DESCRIPTION "Registration of new IANAifTypes
188 and 189."
REVISION "200010020000Z" -- Oct 02, 2000
DESCRIPTION "Registration of new IANAifType 187."
REVISION "200009010000Z" -- Sept 01, 2000
DESCRIPTION "Registration of new IANAifTypes
184, 185, and 186."
REVISION "200008240000Z" -- Aug 24, 2000
DESCRIPTION "Registration of new IANAifType 183."
REVISION "200008230000Z" -- Aug 23, 2000
DESCRIPTION "Registration of new IANAifTypes
174-182."
REVISION "200008220000Z" -- Aug 22, 2000
DESCRIPTION "Registration of new IANAifTypes 170,
171, 172 and 173."
REVISION "200004250000Z" -- Apr 25, 2000
DESCRIPTION "Registration of new IANAifTypes 168 and 169."
REVISION "200003060000Z" -- Mar 6, 2000
DESCRIPTION "Fixed a missing semi-colon in the IMPORT.
Also cleaned up the REVISION log a bit.
It is not complete, but from now on it will
be maintained and kept up to date with each
change to this MIB module."
REVISION "199910081430Z" -- Oct 08, 1999
DESCRIPTION "Include new name assignments up to cnr(85).
This is the first version available via the WWW
at: ftp://ftp.isi.edu/mib/ianaiftype.mib"
REVISION "199401310000Z" -- Jan 31, 1994
DESCRIPTION "Initial version of this MIB as published in
RFC 1573."
::= { mib-2 30 }
IANAifType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used as the syntax of the ifType
object in the (updated) definition of MIB-II's
ifTable.
The definition of this textual convention with the
addition of newly assigned values is published
periodically by the IANA, in either the Assigned
Numbers RFC, or some derivative of it specific to
Internet Network Management number assignments. (The
latest arrangements can be obtained by contacting the
IANA.)
Requests for new values should be made to IANA via
email (iana@iana.org).
The relationship between the assignment of ifType
values and of OIDs to particular media-specific MIBs
is solely the purview of IANA and is subject to change
without notice. Quite often, a media-specific MIB's
OID-subtree assignment within MIB-II's 'transmission'
subtree will be the same as its ifType value.
However, in some circumstances this will not be the
case, and implementors must not pre-assume any
specific relationship between ifType values and
transmission subtree OIDs."
SYNTAX INTEGER {
other(1), -- none of the following
regular1822(2),
hdh1822(3),
ddnX25(4),
rfc877x25(5),
ethernetCsmacd(6),
iso88023Csmacd(7),
iso88024TokenBus(8),
iso88025TokenRing(9),
iso88026Man(10),
starLan(11),
proteon10Mbit(12),
proteon80Mbit(13),
hyperchannel(14),
fddi(15),
lapb(16),
sdlc(17),
ds1(18), -- DS1-MIB
e1(19), -- Obsolete see DS1-MIB
basicISDN(20),
primaryISDN(21),
propPointToPointSerial(22), -- proprietary serial
ppp(23),
softwareLoopback(24),
eon(25), -- CLNP over IP
ethernet3Mbit(26),
nsip(27), -- XNS over IP
slip(28), -- generic SLIP
ultra(29), -- ULTRA technologies
ds3(30), -- DS3-MIB
sip(31), -- SMDS, coffee
frameRelay(32), -- DTE only.
rs232(33),
para(34), -- parallel-port
arcnet(35), -- arcnet
arcnetPlus(36), -- arcnet plus
atm(37), -- ATM cells
miox25(38),
sonet(39), -- SONET or SDH
x25ple(40),
iso88022llc(41),
localTalk(42),
smdsDxi(43),
frameRelayService(44), -- FRNETSERV-MIB
v35(45),
hssi(46),
hippi(47),
modem(48), -- Generic modem
aal5(49), -- AAL5 over ATM
sonetPath(50),
sonetVT(51),
smdsIcip(52), -- SMDS InterCarrier Interface
propVirtual(53), -- proprietary virtual/internal
propMultiplexor(54),-- proprietary multiplexing
ieee80212(55), -- 100BaseVG
fibreChannel(56), -- Fibre Channel
hippiInterface(57), -- HIPPI interfaces
frameRelayInterconnect(58), -- Obsolete use either
-- frameRelay(32) or
-- frameRelayService(44).
aflane8023(59), -- ATM Emulated LAN for 802.3
aflane8025(60), -- ATM Emulated LAN for 802.5
cctEmul(61), -- ATM Emulated circuit
fastEther(62), -- Fast Ethernet (100BaseT)
isdn(63), -- ISDN and X.25
v11(64), -- CCITT V.11/X.21
v36(65), -- CCITT V.36
g703at64k(66), -- CCITT G703 at 64Kbps
g703at2mb(67), -- Obsolete see DS1-MIB
qllc(68), -- SNA QLLC
fastEtherFX(69), -- Fast Ethernet (100BaseFX)
channel(70), -- channel
ieee80211(71), -- radio spread spectrum
ibm370parChan(72), -- IBM System 360/370 OEMI Channel
escon(73), -- IBM Enterprise Systems Connection
dlsw(74), -- Data Link Switching
isdns(75), -- ISDN S/T interface
isdnu(76), -- ISDN U interface
lapd(77), -- Link Access Protocol D
ipSwitch(78), -- IP Switching Objects
rsrb(79), -- Remote Source Route Bridging
atmLogical(80), -- ATM Logical Port
ds0(81), -- Digital Signal Level 0
ds0Bundle(82), -- group of ds0s on the same ds1
bsc(83), -- Bisynchronous Protocol
async(84), -- Asynchronous Protocol
cnr(85), -- Combat Net Radio
iso88025Dtr(86), -- ISO 802.5r DTR
eplrs(87), -- Ext Pos Loc Report Sys
arap(88), -- Appletalk Remote Access Protocol
propCnls(89), -- Proprietary Connectionless Protocol
hostPad(90), -- CCITT-ITU X.29 PAD Protocol
termPad(91), -- CCITT-ITU X.3 PAD Facility
frameRelayMPI(92), -- Multiproto Interconnect over FR
x213(93), -- CCITT-ITU X213
adsl(94), -- Asymmetric Digital Subscriber Loop
radsl(95), -- Rate-Adapt. Digital Subscriber Loop
sdsl(96), -- Symmetric Digital Subscriber Loop
vdsl(97), -- Very H-Speed Digital Subscrib. Loop
iso88025CRFPInt(98), -- ISO 802.5 CRFP
myrinet(99), -- Myricom Myrinet
voiceEM(100), -- voice recEive and transMit
voiceFXO(101), -- voice Foreign Exchange Office
voiceFXS(102), -- voice Foreign Exchange Station
voiceEncap(103), -- voice encapsulation
voiceOverIp(104), -- voice over IP encapsulation
atmDxi(105), -- ATM DXI
atmFuni(106), -- ATM FUNI
atmIma (107), -- ATM IMA
pppMultilinkBundle(108), -- PPP Multilink Bundle
ipOverCdlc (109), -- IBM ipOverCdlc
ipOverClaw (110), -- IBM Common Link Access to Workstn
stackToStack (111), -- IBM stackToStack
virtualIpAddress (112), -- IBM VIPA
mpc (113), -- IBM multi-protocol channel support
ipOverAtm (114), -- IBM ipOverAtm
iso88025Fiber (115), -- ISO 802.5j Fiber Token Ring
tdlc (116), -- IBM twinaxial data link control
gigabitEthernet (117), -- Gigabit Ethernet
hdlc (118), -- HDLC
lapf (119), -- LAP F
v37 (120), -- V.37
x25mlp (121), -- Multi-Link Protocol
x25huntGroup (122), -- X25 Hunt Group
trasnpHdlc (123), -- Transp HDLC
interleave (124), -- Interleave channel
fast (125), -- Fast channel
ip (126), -- IP (for APPN HPR in IP networks)
docsCableMaclayer (127), -- CATV Mac Layer
docsCableDownstream (128), -- CATV Downstream interface
docsCableUpstream (129), -- CATV Upstream interface
a12MppSwitch (130), -- Avalon Parallel Processor
tunnel (131), -- Encapsulation interface
coffee (132), -- coffee pot
ces (133), -- Circuit Emulation Service
atmSubInterface (134), -- ATM Sub Interface
l2vlan (135), -- Layer 2 Virtual LAN using 802.1Q
l3ipvlan (136), -- Layer 3 Virtual LAN using IP
l3ipxvlan (137), -- Layer 3 Virtual LAN using IPX
digitalPowerline (138), -- IP over Power Lines
mediaMailOverIp (139), -- Multimedia Mail over IP
dtm (140), -- Dynamic syncronous Transfer Mode
dcn (141), -- Data Communications Network
ipForward (142), -- IP Forwarding Interface
msdsl (143), -- Multi-rate Symmetric DSL
ieee1394 (144), -- IEEE1394 High Performance Serial Bus
if-gsn (145), -- HIPPI-6400
dvbRccMacLayer (146), -- DVB-RCC MAC Layer
dvbRccDownstream (147), -- DVB-RCC Downstream Channel
dvbRccUpstream (148), -- DVB-RCC Upstream Channel
atmVirtual (149), -- ATM Virtual Interface
mplsTunnel (150), -- MPLS Tunnel Virtual Interface
srp (151), -- Spatial Reuse Protocol
voiceOverAtm (152), -- Voice Over ATM
voiceOverFrameRelay (153), -- Voice Over Frame Relay
idsl (154), -- Digital Subscriber Loop over ISDN
compositeLink (155), -- Avici Composite Link Interface
ss7SigLink (156), -- SS7 Signaling Link
propWirelessP2P (157), -- Prop. P2P wireless interface
frForward (158), -- Frame Forward Interface
rfc1483 (159), -- Multiprotocol over ATM AAL5
usb (160), -- USB Interface
ieee8023adLag (161), -- IEEE 802.3ad Link Aggregate
bgppolicyaccounting (162), -- BGP Policy Accounting
frf16MfrBundle (163), -- FRF .16 Multilink Frame Relay
h323Gatekeeper (164), -- H323 Gatekeeper
h323Proxy (165), -- H323 Voice and Video Proxy
mpls (166), -- MPLS
mfSigLink (167), -- Multi-frequency signaling link
hdsl2 (168), -- High Bit-Rate DSL - 2nd generation
shdsl (169), -- Multirate HDSL2
ds1FDL (170), -- Facility Data Link 4Kbps on a DS1
pos (171), -- Packet over SONET/SDH Interface
dvbAsiIn (172), -- DVB-ASI Input
dvbAsiOut (173), -- DVB-ASI Output
plc (174), -- Power Line Communtications
nfas (175), -- Non Facility Associated Signaling
tr008 (176), -- TR008
gr303RDT (177), -- Remote Digital Terminal
gr303IDT (178), -- Integrated Digital Terminal
isup (179), -- ISUP
propDocsWirelessMaclayer (180), -- prop/Maclayer
propDocsWirelessDownstream (181), -- prop/Downstream
propDocsWirelessUpstream (182), -- prop/Upstream
hiperlan2 (183), -- HIPERLAN Type 2 Radio Interface
propBWAp2Mp (184), -- PropBroadbandWirelessAccesspt2multipt
sonetOverheadChannel (185), -- SONET Overhead Channel
digitalWrapperOverheadChannel (186), -- Digital Wrapper
aal2 (187), -- ATM adaptation layer 2
radioMAC (188), -- MAC layer over radio links
atmRadio (189), -- ATM over radio links
imt (190), -- Inter Machine Trunks
mvl (191), -- Multiple Virtual Lines DSL
reachDSL (192), -- Long Reach DSL
frDlciEndPt (193), -- Frame Relay DLCI End Point
atmVciEndPt (194), -- ATM VCI End Point
opticalChannel (195), -- Optical Channel
opticalTransport (196), -- Optical Transport
propAtm (197) -- Proprietary ATM
}
END

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,972 +0,0 @@
P-BRIDGE-MIB DEFINITIONS ::= BEGIN
-- -------------------------------------------------------------
-- MIB for IEEE 802.1p devices
-- -------------------------------------------------------------
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, Counter64
FROM SNMPv2-SMI
TruthValue, TimeInterval, MacAddress, TEXTUAL-CONVENTION
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
dot1dTp, dot1dTpPort, dot1dBridge,
dot1dBasePortEntry, dot1dBasePort
FROM BRIDGE-MIB;
pBridgeMIB MODULE-IDENTITY
LAST-UPDATED "9908250000Z"
ORGANIZATION "IETF Bridge MIB Working Group"
CONTACT-INFO
" Les Bell
Postal: 3Com Europe Ltd.
3Com Centre, Boundary Way
Hemel Hempstead, Herts. HP2 7YU
UK
Phone: +44 1442 438025
Email: Les_Bell@3Com.com
Andrew Smith
Postal: Extreme Networks
3585 Monroe St.
Santa Clara CA 95051
USA
Phone: +1 408 579 2821
Email: andrew@extremenetworks.com
Paul Langille
Postal: Newbridge Networks
5 Corporate Drive
Andover, MA 01810
USA
Phone: +1 978 691 4665
Email: langille@newbridge.com
Anil Rijhsinghani
Postal: Cabletron Systems
50 Minuteman Road
Andover, MA 01810
USA
Phone: +1 978 684 1295
Email: anil@cabletron.com
Keith McCloghrie
Postal: cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
Phone: +1 408 526 5260
Email: kzm@cisco.com"
DESCRIPTION
"The Bridge MIB Extension module for managing Priority
and Multicast Filtering, defined by IEEE 802.1D-1998."
-- revision history
REVISION "9908250000Z"
DESCRIPTION
"Initial version, published as RFC 2674."
::= { dot1dBridge 6 }
pBridgeMIBObjects OBJECT IDENTIFIER ::= { pBridgeMIB 1 }
-- -------------------------------------------------------------
-- Textual Conventions
-- -------------------------------------------------------------
EnabledStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A simple status value for the object."
SYNTAX INTEGER { enabled(1), disabled(2) }
-- -------------------------------------------------------------
-- -------------------------------------------------------------
-- groups in the P-BRIDGE MIB
-- -------------------------------------------------------------
dot1dExtBase OBJECT IDENTIFIER ::= { pBridgeMIBObjects 1 }
dot1dPriority OBJECT IDENTIFIER ::= { pBridgeMIBObjects 2 }
dot1dGarp OBJECT IDENTIFIER ::= { pBridgeMIBObjects 3 }
dot1dGmrp OBJECT IDENTIFIER ::= { pBridgeMIBObjects 4 }
-- -------------------------------------------------------------
-- -------------------------------------------------------------
-- the dot1dExtBase group
-- -------------------------------------------------------------
dot1dDeviceCapabilities OBJECT-TYPE
SYNTAX BITS {
dot1dExtendedFilteringServices(0),
-- can perform filtering of
-- individual multicast addresses
-- controlled by GMRP.
dot1dTrafficClasses(1),
-- can map user priority to
-- multiple traffic classes.
dot1qStaticEntryIndividualPort(2),
-- dot1qStaticUnicastReceivePort &
-- dot1qStaticMulticastReceivePort
-- can represent non-zero entries.
dot1qIVLCapable(3), -- Independent VLAN Learning.
dot1qSVLCapable(4), -- Shared VLAN Learning.
dot1qHybridCapable(5),
-- both IVL & SVL simultaneously.
dot1qConfigurablePvidTagging(6),
-- whether the implementation
-- supports the ability to
-- override the default PVID
-- setting and its egress status
-- (VLAN-Tagged or Untagged) on
-- each port.
dot1dLocalVlanCapable(7)
-- can support multiple local
-- bridges, outside of the scope
-- of 802.1Q defined VLANs.
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Indicates the optional parts of IEEE 802.1D and 802.1Q
that are implemented by this device and are manageable
through this MIB. Capabilities that are allowed on a
per-port basis are indicated in dot1dPortCapabilities."
REFERENCE
"ISO/IEC 15802-3 Section 5.2,
IEEE 802.1Q/D11 Section 5.2, 12.10.1.1.3/b/2"
::= { dot1dExtBase 1 }
dot1dTrafficClassesEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value true(1) indicates that Traffic Classes are
enabled on this bridge. When false(2), the bridge
operates with a single priority level for all traffic."
DEFVAL { true }
::= { dot1dExtBase 2 }
dot1dGmrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The administrative status requested by management for
GMRP. The value enabled(1) indicates that GMRP should
be enabled on this device, in all VLANs, on all ports
for which it has not been specifically disabled. When
disabled(2), GMRP is disabled, in all VLANs, on all
ports and all GMRP packets will be forwarded
transparently. This object affects both Applicant and
Registrar state machines. A transition from disabled(2)
to enabled(1) will cause a reset of all GMRP state
machines on all ports."
DEFVAL { enabled }
::= { dot1dExtBase 3 }
-- -------------------------------------------------------------
-- Port Capabilities Table
-- -------------------------------------------------------------
dot1dPortCapabilitiesTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains capabilities information about
every port that is associated with this bridge."
::= { dot1dExtBase 4 }
dot1dPortCapabilitiesEntry OBJECT-TYPE
SYNTAX Dot1dPortCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of capabilities information about this port
indexed by dot1dBasePort."
-- sbshih 2002/9/30
-- AUGMENTS { dot1dBasePortEntry }
INDEX { dot1dBasePort }
-- end sbshih 2002/9/30
::= { dot1dPortCapabilitiesTable 1 }
Dot1dPortCapabilitiesEntry ::=
SEQUENCE {
dot1dPortCapabilities
BITS
}
dot1dPortCapabilities OBJECT-TYPE
SYNTAX BITS {
dot1qDot1qTagging(0), -- supports 802.1Q VLAN tagging of
-- frames and GVRP.
dot1qConfigurableAcceptableFrameTypes(1),
-- allows modified values of
-- dot1qPortAcceptableFrameTypes.
dot1qIngressFiltering(2)
-- supports the discarding of any
-- frame received on a Port whose
-- VLAN classification does not
-- include that Port in its Member
-- set.
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Indicates the parts of IEEE 802.1D and 802.1Q that are
optional on a per-port basis that are implemented by
this device and are manageable through this MIB."
REFERENCE
"ISO/IEC 15802-3 Section 5.2,
IEEE 802.1Q/D11 Section 5.2"
::= { dot1dPortCapabilitiesEntry 1 }
-- -------------------------------------------------------------
-- the dot1dPriority group
-- -------------------------------------------------------------
-- -------------------------------------------------------------
-- Port Priority Table
-- -------------------------------------------------------------
dot1dPortPriorityTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains information about every port that
is associated with this transparent bridge."
::= { dot1dPriority 1 }
dot1dPortPriorityEntry OBJECT-TYPE
SYNTAX Dot1dPortPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of Default User Priorities for each port of a
transparent bridge. This is indexed by dot1dBasePort."
-- sbshih 2002/9/30
-- AUGMENTS { dot1dBasePortEntry }
INDEX { dot1dBasePort }
-- end sbshih 2002/9/30
::= { dot1dPortPriorityTable 1 }
Dot1dPortPriorityEntry ::=
SEQUENCE {
dot1dPortDefaultUserPriority
INTEGER,
dot1dPortNumTrafficClasses
INTEGER
}
dot1dPortDefaultUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The default ingress User Priority for this port. This
only has effect on media, such as Ethernet, that do not
support native User Priority."
::= { dot1dPortPriorityEntry 1 }
dot1dPortNumTrafficClasses OBJECT-TYPE
SYNTAX INTEGER (1..8)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The number of egress traffic classes supported on this
port. This object may optionally be read-only."
::= { dot1dPortPriorityEntry 2 }
-- -------------------------------------------------------------
-- User Priority Regeneration Table
-- -------------------------------------------------------------
dot1dUserPriorityRegenTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dUserPriorityRegenEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of Regenerated User Priorities for each received
User Priority on each port of a bridge. The Regenerated
User Priority value may be used to index the Traffic
Class Table for each input port. This only has effect
on media that support native User Priority. The default
values for Regenerated User Priorities are the same as
the User Priorities."
REFERENCE
"ISO/IEC 15802-3 Section 6.4"
::= { dot1dPriority 2 }
dot1dUserPriorityRegenEntry OBJECT-TYPE
SYNTAX Dot1dUserPriorityRegenEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A mapping of incoming User Priority to a Regenerated
User Priority."
INDEX { dot1dBasePort, dot1dUserPriority }
::= { dot1dUserPriorityRegenTable 1 }
Dot1dUserPriorityRegenEntry ::=
SEQUENCE {
dot1dUserPriority
INTEGER,
dot1dRegenUserPriority
INTEGER
}
dot1dUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The User Priority for a frame received on this port."
::= { dot1dUserPriorityRegenEntry 1 }
dot1dRegenUserPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The Regenerated User Priority the incoming User
Priority is mapped to for this port."
::= { dot1dUserPriorityRegenEntry 2 }
-- -------------------------------------------------------------
-- Traffic Class Table
-- -------------------------------------------------------------
dot1dTrafficClassTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTrafficClassEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table mapping evaluated User Priority to Traffic
Class, for forwarding by the bridge. Traffic class is a
number in the range (0..(dot1dPortNumTrafficClasses-1))."
REFERENCE
"ISO/IEC 15802-3 Table 7-2"
::= { dot1dPriority 3 }
dot1dTrafficClassEntry OBJECT-TYPE
SYNTAX Dot1dTrafficClassEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"User Priority to Traffic Class mapping."
INDEX { dot1dBasePort, dot1dTrafficClassPriority }
::= { dot1dTrafficClassTable 1 }
Dot1dTrafficClassEntry ::=
SEQUENCE {
dot1dTrafficClassPriority
INTEGER,
dot1dTrafficClass
INTEGER
}
dot1dTrafficClassPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Priority value determined for the received frame.
This value is equivalent to the priority indicated in
the tagged frame received, or one of the evaluated
priorities, determined according to the media-type.
For untagged frames received from Ethernet media, this
value is equal to the dot1dPortDefaultUserPriority value
for the ingress port.
For untagged frames received from non-Ethernet media,
this value is equal to the dot1dRegenUserPriority value
for the ingress port and media-specific user priority."
::= { dot1dTrafficClassEntry 1 }
dot1dTrafficClass OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The Traffic Class the received frame is mapped to."
::= { dot1dTrafficClassEntry 2 }
-- -------------------------------------------------------------
-- Outbound Access Priority Table
-- -------------------------------------------------------------
dot1dPortOutboundAccessPriorityTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortOutboundAccessPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table mapping Regenerated User Priority to Outbound
Access Priority. This is a fixed mapping for all port
types, with two options for 802.5 Token Ring."
REFERENCE
"ISO/IEC 15802-3 Table 7-3"
::= { dot1dPriority 4 }
dot1dPortOutboundAccessPriorityEntry OBJECT-TYPE
SYNTAX Dot1dPortOutboundAccessPriorityEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Regenerated User Priority to Outbound Access Priority
mapping."
INDEX { dot1dBasePort, dot1dRegenUserPriority }
::= { dot1dPortOutboundAccessPriorityTable 1 }
Dot1dPortOutboundAccessPriorityEntry ::=
SEQUENCE {
dot1dPortOutboundAccessPriority
INTEGER
}
dot1dPortOutboundAccessPriority OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Outbound Access Priority the received frame is
mapped to."
::= { dot1dPortOutboundAccessPriorityEntry 1 }
-- -------------------------------------------------------------
-- the dot1dGarp group
-- -------------------------------------------------------------
-- -------------------------------------------------------------
-- The GARP Port Table
-- -------------------------------------------------------------
dot1dPortGarpTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortGarpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of GARP control information about every bridge
port. This is indexed by dot1dBasePort."
::= { dot1dGarp 1 }
dot1dPortGarpEntry OBJECT-TYPE
SYNTAX Dot1dPortGarpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"GARP control information for a bridge port."
-- sbshih 2002/9/30
-- AUGMENTS { dot1dBasePortEntry }
INDEX { dot1dBasePort }
-- end sbshih 2002/9/30
::= { dot1dPortGarpTable 1 }
Dot1dPortGarpEntry ::=
SEQUENCE {
dot1dPortGarpJoinTime
TimeInterval,
dot1dPortGarpLeaveTime
TimeInterval,
dot1dPortGarpLeaveAllTime
TimeInterval
}
dot1dPortGarpJoinTime OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The GARP Join time, in centiseconds."
DEFVAL { 20 }
::= { dot1dPortGarpEntry 1 }
dot1dPortGarpLeaveTime OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The GARP Leave time, in centiseconds."
DEFVAL { 60 }
::= { dot1dPortGarpEntry 2 }
dot1dPortGarpLeaveAllTime OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The GARP LeaveAll time, in centiseconds."
DEFVAL { 1000 }
::= { dot1dPortGarpEntry 3 }
-- -------------------------------------------------------------
-- The GMRP Port Configuration and Status Table
-- -------------------------------------------------------------
dot1dPortGmrpTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dPortGmrpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of GMRP control and status information about
every bridge port. Augments the dot1dBasePortTable."
::= { dot1dGmrp 1 }
dot1dPortGmrpEntry OBJECT-TYPE
SYNTAX Dot1dPortGmrpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"GMRP control and status information for a bridge port."
-- sbshih 2002/9/30
-- AUGMENTS { dot1dBasePortEntry }
INDEX { dot1dBasePort }
-- end sbshih 2002/9/30
::= { dot1dPortGmrpTable 1 }
Dot1dPortGmrpEntry ::=
SEQUENCE {
dot1dPortGmrpStatus
EnabledStatus,
dot1dPortGmrpFailedRegistrations
Counter32,
dot1dPortGmrpLastPduOrigin
MacAddress
}
dot1dPortGmrpStatus OBJECT-TYPE
SYNTAX EnabledStatus
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The administrative state of GMRP operation on this port. The
value enabled(1) indicates that GMRP is enabled on this port
in all VLANs as long as dot1dGmrpStatus is also enabled(1).
A value of disabled(2) indicates that GMRP is disabled on
this port in all VLANs: any GMRP packets received will
be silently discarded and no GMRP registrations will be
propagated from other ports. Setting this to a value of
enabled(1) will be stored by the agent but will only take
effect on the GMRP protocol operation if dot1dGmrpStatus
also indicates the value enabled(1). This object affects
all GMRP Applicant and Registrar state machines on this
port. A transition from disabled(2) to enabled(1) will
cause a reset of all GMRP state machines on this port."
DEFVAL { enabled }
::= { dot1dPortGmrpEntry 1 }
dot1dPortGmrpFailedRegistrations OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of failed GMRP registrations, for any
reason, in all VLANs, on this port."
::= { dot1dPortGmrpEntry 2 }
dot1dPortGmrpLastPduOrigin OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Source MAC Address of the last GMRP message
received on this port."
::= { dot1dPortGmrpEntry 3 }
-- -------------------------------------------------------------
-- High Capacity Port Table for Transparent Bridges
-- -------------------------------------------------------------
dot1dTpHCPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpHCPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains information about every high
capacity port that is associated with this transparent
bridge."
::= { dot1dTp 5 }
dot1dTpHCPortEntry OBJECT-TYPE
SYNTAX Dot1dTpHCPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Statistics information for each high capacity port of a
transparent bridge."
INDEX { dot1dTpPort }
::= { dot1dTpHCPortTable 1 }
Dot1dTpHCPortEntry ::=
SEQUENCE {
dot1dTpHCPortInFrames
Counter64,
dot1dTpHCPortOutFrames
Counter64,
dot1dTpHCPortInDiscards
Counter64
}
dot1dTpHCPortInFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames that have been received by this
port from its segment. Note that a frame received on
the interface corresponding to this port is only counted
by this object if and only if it is for a protocol being
processed by the local bridging function, including
bridge management frames."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpHCPortEntry 1 }
dot1dTpHCPortOutFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames that have been transmitted by this
port to its segment. Note that a frame transmitted on
the interface corresponding to this port is only counted
by this object if and only if it is for a protocol being
processed by the local bridging function, including
bridge management frames."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpHCPortEntry 2 }
dot1dTpHCPortInDiscards OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Count of valid frames that have been received by this
port from its segment which were discarded (i.e.,
filtered) by the Forwarding Process."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpHCPortEntry 3 }
-- ----------------------------------------------------
-- Upper part of High Capacity Port Table for Transparent Bridges
-- ----------------------------------------------------
dot1dTpPortOverflowTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpPortOverflowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table that contains the most-significant bits of
statistics counters for ports that are associated with this
transparent bridge that are on high capacity interfaces, as
defined in the conformance clauses for this table. This table
is provided as a way to read 64-bit counters for agents which
support only SNMPv1.
Note that the reporting of most-significant and
least-significant counter bits separately runs the risk of
missing an overflow of the lower bits in the interval between
sampling. The manager must be aware of this possibility, even
within the same varbindlist, when interpreting the results of
a request or asynchronous notification."
::= { dot1dTp 6 }
dot1dTpPortOverflowEntry OBJECT-TYPE
SYNTAX Dot1dTpPortOverflowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The most significant bits of statistics counters for a high
capacity interface of a transparent bridge. Each object is
associated with a corresponding object in dot1dTpPortTable
which indicates the least significant bits of the counter."
INDEX { dot1dTpPort }
::= { dot1dTpPortOverflowTable 1 }
Dot1dTpPortOverflowEntry ::=
SEQUENCE {
dot1dTpPortInOverflowFrames
Counter32,
dot1dTpPortOutOverflowFrames
Counter32,
dot1dTpPortInOverflowDiscards
Counter32
}
dot1dTpPortInOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the associated dot1dTpPortInFrames
counter has overflowed."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpPortOverflowEntry 1 }
dot1dTpPortOutOverflowFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the associated dot1dTpPortOutFrames
counter has overflowed."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpPortOverflowEntry 2 }
dot1dTpPortInOverflowDiscards OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the associated
dot1dTpPortInDiscards counter has overflowed."
REFERENCE
"ISO/IEC 15802-3 Section 14.6.1.1.3"
::= { dot1dTpPortOverflowEntry 3 }
-- -------------------------------------------------------------
-- IEEE 802.1p MIB - Conformance Information
-- -------------------------------------------------------------
pBridgeConformance OBJECT IDENTIFIER ::= { pBridgeMIB 2 }
pBridgeGroups OBJECT IDENTIFIER ::= { pBridgeConformance 1 }
pBridgeCompliances OBJECT IDENTIFIER
::= { pBridgeConformance 2 }
-- -------------------------------------------------------------
-- units of conformance
-- -------------------------------------------------------------
pBridgeExtCapGroup OBJECT-GROUP
OBJECTS {
dot1dDeviceCapabilities,
dot1dPortCapabilities
}
STATUS current
DESCRIPTION
"A collection of objects indicating the optional
capabilites of the device."
::= { pBridgeGroups 1 }
pBridgeDeviceGmrpGroup OBJECT-GROUP
OBJECTS {
dot1dGmrpStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing device-level control
for the Multicast Filtering extended bridge services."
::= { pBridgeGroups 2 }
pBridgeDevicePriorityGroup OBJECT-GROUP
OBJECTS {
dot1dTrafficClassesEnabled
}
STATUS current
DESCRIPTION
"A collection of objects providing device-level control
for the Priority services."
::= { pBridgeGroups 3 }
pBridgeDefaultPriorityGroup OBJECT-GROUP
OBJECTS {
dot1dPortDefaultUserPriority
}
STATUS current
DESCRIPTION
"A collection of objects defining the User Priority
applicable to each port for media which do not support
native User Priority."
::= { pBridgeGroups 4 }
pBridgeRegenPriorityGroup OBJECT-GROUP
OBJECTS {
dot1dRegenUserPriority
}
STATUS current
DESCRIPTION
"A collection of objects defining the User Priorities
applicable to each port for media which support native
User Priority."
::= { pBridgeGroups 5 }
pBridgePriorityGroup OBJECT-GROUP
OBJECTS {
dot1dPortNumTrafficClasses,
dot1dTrafficClass
}
STATUS current
DESCRIPTION
"A collection of objects defining the traffic classes
within a bridge for each evaluated User Priority."
::= { pBridgeGroups 6 }
pBridgeAccessPriorityGroup OBJECT-GROUP
OBJECTS {
dot1dPortOutboundAccessPriority
}
STATUS current
DESCRIPTION
"A collection of objects defining the media dependent
outbound access level for each priority."
::= { pBridgeGroups 7 }
pBridgePortGarpGroup OBJECT-GROUP
OBJECTS {
dot1dPortGarpJoinTime,
dot1dPortGarpLeaveTime,
dot1dPortGarpLeaveAllTime
}
STATUS current
DESCRIPTION
"A collection of objects providing port level control
and status information for GARP operation."
::= { pBridgeGroups 8 }
pBridgePortGmrpGroup OBJECT-GROUP
OBJECTS {
dot1dPortGmrpStatus,
dot1dPortGmrpFailedRegistrations,
dot1dPortGmrpLastPduOrigin
}
STATUS current
DESCRIPTION
"A collection of objects providing port level control
and status information for GMRP operation."
::= { pBridgeGroups 9 }
pBridgeHCPortGroup OBJECT-GROUP
OBJECTS {
dot1dTpHCPortInFrames,
dot1dTpHCPortOutFrames,
dot1dTpHCPortInDiscards
}
STATUS current
DESCRIPTION
"A collection of objects providing 64-bit statistics
counters for high capacity bridge ports."
::= { pBridgeGroups 10 }
pBridgePortOverflowGroup OBJECT-GROUP
OBJECTS {
dot1dTpPortInOverflowFrames,
dot1dTpPortOutOverflowFrames,
dot1dTpPortInOverflowDiscards
}
STATUS current
DESCRIPTION
"A collection of objects providing overflow statistics
counters for high capacity bridge ports."
::= { pBridgeGroups 11 }
-- -------------------------------------------------------------
-- compliance statements
-- -------------------------------------------------------------
pBridgeCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for device support of Priority
and Multicast Filtering extended bridging services."
MODULE
MANDATORY-GROUPS { pBridgeExtCapGroup }
GROUP pBridgeDeviceGmrpGroup
DESCRIPTION
"This group is mandatory for devices supporting the GMRP
application, defined by IEEE 802.1D Extended Filtering
Services."
GROUP pBridgeDevicePriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE
802.1D."
GROUP pBridgeDefaultPriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by the
extended bridge services with media types, such as
Ethernet, that do not support native User Priority."
GROUP pBridgeRegenPriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE 802.1D
and which have interface media types that support
native User Priority e.g. IEEE 802.5."
GROUP pBridgePriorityGroup
DESCRIPTION
"This group is mandatory only for devices supporting
the priority forwarding operations defined by IEEE 802.1D."
GROUP pBridgeAccessPriorityGroup
DESCRIPTION
"This group is optional and is relevant only for devices
supporting the priority forwarding operations defined by
IEEE 802.1D and which have interface media types that support
native Access Priority e.g. IEEE 802.5."
GROUP pBridgePortGarpGroup
DESCRIPTION
"This group is mandatory for devices supporting any
of the GARP applications: e.g. GMRP, defined by the
extended filtering services of 802.1D; or GVRP,
defined by 802.1Q (refer to the Q-BRIDGE-MIB for
conformance statements for GVRP)."
GROUP pBridgePortGmrpGroup
DESCRIPTION
"This group is mandatory for devices supporting the
GMRP application, as defined by IEEE 802.1D Extended
Filtering Services."
GROUP pBridgeHCPortGroup
DESCRIPTION
"Support for this group in a device is mandatory for those
bridge ports which map to network interfaces that have the
value of the corresponding instance of ifSpeed
greater than 650,000,000 bits/second."
GROUP pBridgePortOverflowGroup
DESCRIPTION
"Support for this group in a device is mandatory for those
bridge ports which map to network interfaces that have the
value of the corresponding instance of ifSpeed
greater than 650,000,000 bits/second."
OBJECT dot1dPortNumTrafficClasses
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT dot1dTrafficClass
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT dot1dRegenUserPriority
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
::= { pBridgeCompliances 1 }
END

View File

@@ -1,185 +0,0 @@
PerfHist-TC-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
Gauge32, mib-2
FROM SNMPv2-SMI
TEXTUAL-CONVENTION
FROM SNMPv2-TC;
perfHistTCMIB MODULE-IDENTITY
LAST-UPDATED "9811071100Z"
ORGANIZATION "IETF AToMMIB and TrunkMIB WGs"
CONTACT-INFO
"Kaj Tesink
Postal: Bellcore
331 Newman Springs Road
Red Bank, NJ 07701
USA
Tel: +1 732 758 5254
Fax: +1 732 758 2269
E-mail: kaj@bellcore.com"
DESCRIPTION
"This MIB Module provides Textual Conventions
to be used by systems supporting 15 minute
based performance history counts."
::= { mib-2 58 }
-- The Textual Conventions defined below are organized
-- alphabetically
-- Use of these TCs assumes the following:
-- 0 The agent supports 15 minute based history
-- counters.
-- 0 The agent is capable of keeping a history of n
-- intervals of 15 minute performance data. The
-- value of n is defined by the specific MIB
-- module but shall be 0 < n =< 96.
-- 0 The agent may optionally support performance
-- data aggregating the history intervals.
-- 0 The agent will keep separate tables for the
-- current interval, the history intervals, and
-- the total aggregates.
-- 0 The agent will keep the following objects.
-- If performance data is kept for multiple instances
-- of a measured entity, then
-- these objects are applied to each instance of
-- the measured entity (e.g., interfaces).
--
-- xyzTimeElapsed OBJECT-TYPE
-- SYNTAX INTEGER (0..899)
-- MAX-ACCESS read-only
-- STATUS current
-- DESCRIPTION
-- "The number of seconds that have elapsed since
-- the beginning of the current measurement period.
-- If, for some reason, such as an adjustment in the
-- system's time-of-day clock, the current interval
-- exceeds the maximum value, the agent will return
-- the maximum value."
-- ::= { xxx }
-- xyzValidIntervals OBJECT-TYPE
-- SYNTAX INTEGER (0..<n>)
-- MAX-ACCESS read-only
-- STATUS current
-- DESCRIPTION
-- "The number of previous near end intervals
-- for which data was collected.
-- [ The overall constraint on <n> is 1 =< n =< 96; ]
-- [ Define any additional constraints on <n> here. ]
-- The value will be <n> unless the measurement was
-- (re-)started within the last (<n>*15) minutes, in which
-- case the value will be the number of complete 15
-- minute intervals for which the agent has at least
-- some data. In certain cases (e.g., in the case
-- where the agent is a proxy) it is possible that some
-- intervals are unavailable. In this case, this
-- interval is the maximum interval number for
-- which data is available."
-- ::= { xxx }
-- xyzInvalidIntervals OBJECT-TYPE
-- SYNTAX INTEGER (0..<n>)
-- MAX-ACCESS read-only
-- STATUS current
-- DESCRIPTION
-- "The number of intervals in the range from
-- 0 to xyzValidIntervals for which no
-- data is available. This object will typically
-- be zero except in cases where the data for some
-- intervals are not available (e.g., in proxy
-- situations)."
-- ::= { xxx }
PerfCurrentCount ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A counter associated with a
performance measurement in a current 15
minute measurement interval. The value
of this counter starts from zero and is
increased when associated events occur,
until the end of the 15 minute interval.
At that time the value of the counter is
stored in the first 15 minute history
interval, and the CurrentCount is
restarted at zero. In the
case where the agent has no valid data
available for the current interval the
corresponding object instance is not
available and upon a retrieval request
a corresponding error message shall be
returned to indicate that this instance
does not exist (for example, a noSuchName
error for SNMPv1 and a noSuchInstance for
SNMPv2 GET operation)."
SYNTAX Gauge32
PerfIntervalCount ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A counter associated with a
performance measurement in a previous
15 minute measurement interval. In the
case where the agent has no valid data
available for a particular interval the
corresponding object instance is not
available and upon a retrieval request
a corresponding error message shall be
returned to indicate that this instance
does not exist (for example, a noSuchName
error for SNMPv1 and a noSuchInstance for
SNMPv2 GET operation).
In a system supporting
a history of n intervals with
IntervalCount(1) and IntervalCount(n) the
most and least recent intervals
respectively, the following applies at
the end of a 15 minute interval:
- discard the value of IntervalCount(n)
- the value of IntervalCount(i) becomes that
of IntervalCount(i-1) for n >= i > 1
- the value of IntervalCount(1) becomes that
of CurrentCount
- the TotalCount, if supported, is adjusted."
SYNTAX Gauge32
PerfTotalCount ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A counter associated with a
performance measurements aggregating the
previous valid 15 minute measurement
intervals. (Intervals for which no valid
data was available are not counted)"
SYNTAX Gauge32
END

File diff suppressed because it is too large Load Diff

View File

@@ -1,79 +0,0 @@
-- file: RFC-1212.my
-- changes:
-- Removed IMPORTS.
-- Commented out OBJECT-TYPE macro definition and replaced
-- with SMIC directive to enable it.
-- dperkins@scruznet.com
RFC-1212 DEFINITIONS ::= BEGIN
-- Make builtin items known
-- SMI OBJECT-TYPE
-- OBJECT-TYPE MACRO ::=
-- BEGIN
-- TYPE NOTATION ::=
-- must conform to
-- RFC1155's ObjectSyntax
-- "SYNTAX" type(ObjectSyntax)
-- "ACCESS" Access
-- "STATUS" Status
-- DescrPart
-- ReferPart
-- IndexPart
-- DefValPart
-- VALUE NOTATION ::= value (VALUE ObjectName)
--
-- Access ::= "read-only"
-- | "read-write"
-- | "write-only"
-- | "not-accessible"
-- Status ::= "mandatory"
-- | "optional"
-- | "obsolete"
-- | "deprecated"
--
-- DescrPart ::=
-- "DESCRIPTION" value (description DisplayString)
-- | empty
--
-- ReferPart ::=
-- "REFERENCE" value (reference DisplayString)
-- | empty
--
-- IndexPart ::=
-- "INDEX" "{" IndexTypes "}"
-- | empty
-- IndexTypes ::=
-- IndexType | IndexTypes "," IndexType
-- IndexType ::=
-- if indexobject, use the SYNTAX
-- value of the correspondent
-- OBJECT-TYPE invocation
-- value (indexobject ObjectName)
-- otherwise use named SMI type
-- must conform to IndexSyntax below
-- | type (indextype)
--
-- DefValPart ::=
-- "DEFVAL" "{" value (defvalue ObjectSyntax) "}"
-- | empty
-- END
--
-- IndexSyntax ::=
-- CHOICE {
-- number
-- INTEGER (0..MAX),
-- string
-- OCTET STRING,
-- object
-- OBJECT IDENTIFIER,
-- address
-- NetworkAddress,
-- ipAddress
-- IpAddress
-- }
END

View File

@@ -1,43 +0,0 @@
-- file: RFC-1215.my
-- Changes:
-- Added MODULE definition.
-- Commented out TRAP-TYPE macro definition and replaced
-- with SMIC directive to enable it.
-- dperkins@scruznet.com
RFC-1215 DEFINITIONS ::= BEGIN
-- Make builtin items known
-- SMI TRAP-TYPE
-- TRAP-TYPE MACRO ::=
-- BEGIN
-- TYPE NOTATION ::= "ENTERPRISE" value
-- (enterprise OBJECT IDENTIFIER)
-- VarPart
-- DescrPart
-- ReferPart
-- VALUE NOTATION ::= value (VALUE INTEGER)
--
-- VarPart ::=
-- "VARIABLES" "{" VarTypes "}"
-- | empty
-- VarTypes ::=
-- VarType | VarTypes "," VarType
-- VarType ::=
-- value (vartype ObjectName)
--
-- DescrPart ::=
-- "DESCRIPTION" value (description DisplayString)
-- | empty
--
-- ReferPart ::=
-- "REFERENCE" value (reference DisplayString)
-- | empty
--
-- END
END

View File

@@ -1,183 +0,0 @@
-- smi.my - Internet-standard SMI definitions
-- $Header: I:/IES-1248/Document/document/mib/STANDARD/rcs/RFC1155-SMI.mib 1.1 2008/07/11 09:36:33 maverick Exp $
--
-- Contributed by NYSERNet Inc. This work was partially supported by the
-- U.S. Defense Advanced Research Projects Agency and the Rome Air Development
-- Center of the U.S. Air Force Systems Command under contract number
-- F30602-88-C-0016.
--
--
--
-- NOTICE
--
-- Acquisition, use, and distribution of this module and related
-- materials are subject to the restrictions of a license agreement.
-- Consult the Preface in the User's Manual for the full terms of
-- this agreement.
--
--
RFC1155-SMI DEFINITIONS ::= BEGIN
EXPORTS -- EVERYTHING
internet, directory, mgmt,
experimental, private, enterprises,
OBJECT-TYPE, ObjectName, ObjectSyntax, SimpleSyntax,
ApplicationSyntax, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks, Opaque;
-- the path to the root
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }
-- BSD UNIX-specific stuff
unix OBJECT IDENTIFIER ::= { enterprises 4 }
-- the agents group
agents OBJECT IDENTIFIER ::= { unix 1 }
-- original "4BSD/ISODE SNMP" { agents 1 }
-- versions of the "4BSD/ISODE SNMP" agent are now under { agents 2 }
fourBSD-isode OBJECT IDENTIFIER ::= { agents 2 }
-- fourBSD-isode.1: add SMUX
-- fourBSD-isode.2: add views
-- fourBSD-isode.3: add sets
-- the SMUX peer group
peers OBJECT IDENTIFIER ::= { unix 3 }
-- versions of the unixd program are under { peers 1 }
unixd OBJECT IDENTIFIER ::= { peers 1 }
-- the current version is unixd.1
-- definition of object types
-- OBJECT-TYPE MACRO ::=
-- BEGIN
-- TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
-- "ACCESS" Access
-- "STATUS" Status
-- VALUE NOTATION ::= value (VALUE ObjectName)
--
-- Access ::= "read-only"
-- | "read-write"
-- | "write-only"
-- | "not-accessible"
-- Status ::= "mandatory"
-- | "optional"
-- | "obsolete"
-- | "deprecated"
-- END
-- names of objects in the MIB
ObjectName ::=
OBJECT IDENTIFIER
-- syntax of objects in the MIB
ObjectSyntax ::=
CHOICE {
simple
SimpleSyntax,
-- note that simple SEQUENCEs are not directly
-- mentioned here to keep things simple (i.e.,
-- prevent mis-use). However, application-wide
-- types which are IMPLICITly encoded simple
-- SEQUENCEs may appear in the following CHOICE
application-wide
ApplicationSyntax
}
SimpleSyntax ::=
CHOICE {
number
INTEGER,
string
OCTET STRING,
object
OBJECT IDENTIFIER,
empty
NULL
}
ApplicationSyntax ::=
CHOICE {
address
NetworkAddress,
counter
Counter,
gauge
Gauge,
ticks
TimeTicks,
arbitrary
Opaque
-- other application-wide types, as they are
-- defined, will be added here
}
-- application-wide types
NetworkAddress ::=
CHOICE {
internet
IpAddress
}
IpAddress ::=
[APPLICATION 0] -- in network-byte order
IMPLICIT OCTET STRING (SIZE (4))
Counter ::=
[APPLICATION 1]
IMPLICIT INTEGER (0..4294967295)
Gauge ::=
[APPLICATION 2]
IMPLICIT INTEGER (0..4294967295)
TimeTicks ::=
[APPLICATION 3]
IMPLICIT INTEGER (0..4294967295)
Opaque ::=
[APPLICATION 4] -- arbitrary ASN.1 value,
IMPLICIT OCTET STRING -- "double-wrapped"
DisplayString ::=
OCTET STRING
END

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,461 +0,0 @@
SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
OBJECT-IDENTITY,
snmpModules FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF;
snmpFrameworkMIB MODULE-IDENTITY
LAST-UPDATED "9709300000Z" -- 30 September 1997
ORGANIZATION "SNMPv3 Working Group"
CONTACT-INFO "WG-email: snmpv3@tis.com
Subscribe: majordomo@tis.com
In message body: subscribe snmpv3
Chair: Russ Mundy
Trusted Information Systems
postal: 3060 Washington Rd
Glenwood MD 21738
USA
email: mundy@tis.com
phone: +1 301-854-6889
Co-editor Dave Harrington
Cabletron Systems, Inc.
postal: Post Office Box 5005
Mail Stop: Durham
35 Industrial Way
Rochester, NH 03867-5005
USA
email: dbh@cabletron.com
phone: +1 603-337-7357
Co-editor Randy Presuhn
BMC Software, Inc.
postal: 1190 Saratoga Avenue
Suite 130
San Jose, CA 95129
USA
email: rpresuhn@bmc.com
phone: +1 408-556-0720
Co-editor: Bert Wijnen
IBM T.J. Watson Research
postal: Schagen 33
3461 GL Linschoten
Netherlands
email: wijnen@vnet.ibm.com
phone: +31 348-432-794
"
DESCRIPTION "The SNMP Management Architecture MIB"
::= { snmpModules 10 }
-- Textual Conventions used in the SNMP Management Architecture ***
SnmpEngineID ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An SNMP engine's administratively-unique identifier.
The value for this object may not be all zeros or
all 'ff'H or the empty (zero length) string.
The initial value for this object may be configured
via an operator console entry or via an algorithmic
function. In the latter case, the following
example algorithm is recommended.
In cases where there are multiple engines on the
same system, the use of this algorithm is NOT
appropriate, as it would result in all of those
engines ending up with the same ID value.
1) The very first bit is used to indicate how the
rest of the data is composed.
0 - as defined by enterprise using former methods
that existed before SNMPv3. See item 2 below.
1 - as defined by this architecture, see item 3
below.
Note that this allows existing uses of the
engineID (also known as AgentID [RFC1910]) to
co-exist with any new uses.
2) The snmpEngineID has a length of 12 octets.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
be assigned '000002b8'H.
The remaining eight octets are determined via
one or more enterprise-specific methods. Such
methods must be designed so as to maximize the
possibility that the value of this object will
be unique in the agent's administrative domain.
For example, it may be the IP address of the SNMP
entity, or the MAC address of one of the
interfaces, with each address suitably padded
with random octets. If multiple methods are
defined, then it is recommended that the first
octet indicate the method being used and the
remaining octets be a function of the method.
3) The length of the octet strings varies.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
be assigned '000002b8'H.
The very first bit is set to 1. For example, the
above value for Acme Networks now changes to be
'800002b8'H.
The fifth octet indicates how the rest (6th and
following octets) are formatted. The values for
the fifth octet are:
0 - reserved, unused.
1 - IPv4 address (4 octets)
lowest non-special IP address
2 - IPv6 address (16 octets)
lowest non-special IP address
3 - MAC address (6 octets)
lowest IEEE MAC address, canonical
order
4 - Text, administratively assigned
Maximum remaining length 27
5 - Octets, administratively assigned
Maximum remaining length 27
6-127 - reserved, unused
127-255 - as defined by the enterprise
Maximum remaining length 27
"
SYNTAX OCTET STRING (SIZE(1..32))
SnmpSecurityModel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An identifier that uniquely identifies a
securityModel of the Security Subsystem within the
SNMP Management Architecture.
The values for securityModel are allocated as
follows:
- The zero value is reserved.
- Values between 1 and 255, inclusive, are reserved
for standards-track Security Models and are
managed by the Internet Assigned Numbers Authority
(IANA).
- Values greater than 255 are allocated to
enterprise-specific Security Models. An
enterprise-specific securityModel value is defined
to be:
enterpriseID * 256 + security model within
enterprise
For example, the fourth Security Model defined by
the enterprise whose enterpriseID is 1 would be
260.
The eight bits allow a maximum of 255 (256-1
reserved) standards based Security Models.
Similarly, they allow a maximum of 255 Security
Models per enterprise.
It is believed that the assignment of new
securityModel values will be rare in practice
because the larger the number of simultaneously
utilized Security Models, the larger the
chance that interoperability will suffer.
Consequently, it is believed that such a range
will be sufficient. In the unlikely event that
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 255
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
securityModels. This limits the ability to
define new proprietary implementations of Security
Models to the first 8,388,608 enterprises.
It is worthwhile to note that, in its encoded
form, the securityModel value will normally
require only a single byte since, in practice,
the leftmost bits will be zero for most messages
and sign extension is suppressed by the encoding
rules.
As of this writing, there are several values
of securityModel defined for use with SNMP or
reserved for use with supporting MIB objects.
They are as follows:
0 reserved for 'any'
1 reserved for SNMPv1
2 reserved for SNMPv2c
3 User-Based Security Model (USM)
"
SYNTAX INTEGER(0..2147483647)
SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An identifier that uniquely identifies a Message
Processing Model of the Message Processing
Subsystem within a SNMP Management Architecture.
The values for messageProcessingModel are
allocated as follows:
- Values between 0 and 255, inclusive, are
reserved for standards-track Message Processing
Models and are managed by the Internet Assigned
Numbers Authority (IANA).
- Values greater than 255 are allocated to
enterprise-specific Message Processing Models.
An enterprise messageProcessingModel value is
defined to be:
enterpriseID * 256 +
messageProcessingModel within enterprise
For example, the fourth Message Processing Model
defined by the enterprise whose enterpriseID
is 1 would be 260.
The eight bits allow a maximum of 256 standards
based Message Processing Models. Similarly, they
allow a maximum 256 Message Processing Models
per enterprise.
It is believed that the assignment of new
messageProcessingModel values will be rare
in practice because the larger the number of
simultaneously utilized Message Processing Models,
the larger the chance that interoperability
will suffer. It is believed that such a range
will be sufficient. In the unlikely event that
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 256
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
messageProcessingModels. This limits the ability
to define new proprietary implementations of
Message Processing Models to the first 8,388,608
enterprises.
It is worthwhile to note that, in its encoded
form, the securityModel value will normally
require only a single byte since, in practice,
the leftmost bits will be zero for most messages
and sign extension is suppressed by the encoding
rules.
As of this writing, there are several values of
messageProcessingModel defined for use with SNMP.
They are as follows:
0 reserved for SNMPv1
1 reserved for SNMPv2c
2 reserved for SNMPv2u and SNMPv2*
3 reserved for SNMPv3
"
SYNTAX INTEGER(0..2147483647)
SnmpSecurityLevel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "A Level of Security at which SNMP messages can be
sent or with which operations are being processed;
in particular, one of:
noAuthNoPriv - without authentication and
without privacy,
authNoPriv - with authentication but
without privacy,
authPriv - with authentication and
with privacy.
These three values are ordered such that
noAuthNoPriv is less than authNoPriv and
authNoPriv is less than authPriv.
"
SYNTAX INTEGER { noAuthNoPriv(1),
authNoPriv(2),
authPriv(3)
}
SnmpAdminString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION "An octet string containing administrative
information, preferably in human-readable form.
To facilitate internationalization, this
information is represented using the ISO/IEC
IS 10646-1 character set, encoded as an octet
string using the UTF-8 transformation format
described in [RFC2044].
Since additional code points are added by
amendments to the 10646 standard from time
to time, implementations must be prepared to
encounter any code point from 0x00000000 to
0x7fffffff.
The use of control codes should be avoided.
When it is necessary to represent a newline,
the control code sequence CR LF should be used.
The use of leading or trailing white space should
be avoided.
For code points not directly supported by user
interface hardware or software, an alternative
means of entry and display, such as hexadecimal,
may be provided.
For information encoded in 7-bit US-ASCII,
the UTF-8 encoding is identical to the
US-ASCII encoding.
Note that when this TC is used for an object that
is used or envisioned to be used as an index, then
a SIZE restriction must be specified so that the
number sub-identifiers for any object instance
do not exceed the limit of 128, as defined by
[RFC1905].
"
SYNTAX OCTET STRING (SIZE (0..255))
-- Administrative assignments ***************************************
snmpFrameworkAdmin
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 }
snmpFrameworkMIBObjects
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 }
snmpFrameworkMIBConformance
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 }
-- the snmpEngine Group ********************************************
snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 }
snmpEngineID OBJECT-TYPE
SYNTAX SnmpEngineID
MAX-ACCESS read-only
STATUS current
DESCRIPTION "An SNMP engine's administratively-unique identifier.
"
::= { snmpEngine 1 }
snmpEngineBoots OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times that the SNMP engine has
(re-)initialized itself since its initial
configuration.
"
::= { snmpEngine 2 }
snmpEngineTime OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of seconds since the SNMP engine last
incremented the snmpEngineBoots object.
"
::= { snmpEngine 3 }
snmpEngineMaxMessageSize OBJECT-TYPE
SYNTAX INTEGER (484..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The maximum length in octets of an SNMP message
which this SNMP engine can send or receive and
process, determined as the minimum of the maximum
message size values supported among all of the
transports available to and supported by the engine.
"
::= { snmpEngine 4 }
-- Registration Points for Authentication and Privacy Protocols **
snmpAuthProtocols OBJECT-IDENTITY
STATUS current
DESCRIPTION "Registration point for standards-track
authentication protocols used in SNMP Management
Frameworks.
"
::= { snmpFrameworkAdmin 1 }
snmpPrivProtocols OBJECT-IDENTITY
STATUS current
DESCRIPTION "Registration point for standards-track privacy
protocols used in SNMP Management Frameworks.
"
::= { snmpFrameworkAdmin 2 }
-- Conformance information ******************************************
snmpFrameworkMIBCompliances
OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1}
snmpFrameworkMIBGroups
OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2}
-- compliance statements
snmpFrameworkMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for SNMP engines which
implement the SNMP Management Framework MIB.
"
MODULE -- this module
MANDATORY-GROUPS { snmpEngineGroup }
::= { snmpFrameworkMIBCompliances 1 }
-- units of conformance
snmpEngineGroup OBJECT-GROUP
OBJECTS {
snmpEngineID,
snmpEngineBoots,
snmpEngineTime,
snmpEngineMaxMessageSize
}
STATUS current
DESCRIPTION "A collection of objects for identifying and
determining the configuration and current timeliness
values of an SNMP engine.
"
::= { snmpFrameworkMIBGroups 1 }
END

View File

@@ -1,322 +0,0 @@
SNMPv2-CONF DEFINITIONS ::= BEGIN
IMPORTS ObjectName, NotificationName, ObjectSyntax
FROM SNMPv2-SMI;
-- definitions for conformance groups
OBJECT-GROUP MACRO ::=
BEGIN
TYPE NOTATION ::=
ObjectsPart
"STATUS" Status
"DESCRIPTION" Text
ReferPart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
ObjectsPart ::=
"OBJECTS" "{" Objects "}"
Objects ::=
Object
| Objects "," Object
Object ::=
value(ObjectName)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
-- a character string as defined in [2]
Text ::= value(IA5String)
END
-- more definitions for conformance groups
NOTIFICATION-GROUP MACRO ::=
BEGIN
TYPE NOTATION ::=
NotificationsPart
"STATUS" Status
"DESCRIPTION" Text
ReferPart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
NotificationsPart ::=
"NOTIFICATIONS" "{" Notifications "}"
Notifications ::=
Notification
| Notifications "," Notification
Notification ::=
value(NotificationName)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
-- a character string as defined in [2]
Text ::= value(IA5String)
END
-- definitions for compliance statements
MODULE-COMPLIANCE MACRO ::=
BEGIN
TYPE NOTATION ::=
"STATUS" Status
"DESCRIPTION" Text
ReferPart
ModulePart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
ModulePart ::=
Modules
Modules ::=
Module
| Modules Module
Module ::=
-- name of module --
"MODULE" ModuleName
MandatoryPart
CompliancePart
ModuleName ::=
-- identifier must start with uppercase letter
identifier ModuleIdentifier
-- must not be empty unless contained
-- in MIB Module
| empty
ModuleIdentifier ::=
value(OBJECT IDENTIFIER)
| empty
MandatoryPart ::=
"MANDATORY-GROUPS" "{" Groups "}"
| empty
Groups ::=
Group
| Groups "," Group
Group ::=
value(OBJECT IDENTIFIER)
CompliancePart ::=
Compliances
| empty
Compliances ::=
Compliance
| Compliances Compliance
Compliance ::=
ComplianceGroup
| Object
ComplianceGroup ::=
"GROUP" value(OBJECT IDENTIFIER)
"DESCRIPTION" Text
Object ::=
"OBJECT" value(ObjectName)
SyntaxPart
WriteSyntaxPart
AccessPart
"DESCRIPTION" Text
-- must be a refinement for object's SYNTAX clause
SyntaxPart ::= "SYNTAX" Syntax
| empty
-- must be a refinement for object's SYNTAX clause
WriteSyntaxPart ::= "WRITE-SYNTAX" Syntax
| empty
Syntax ::= -- Must be one of the following:
-- a base type (or its refinement),
-- a textual convention (or its refinement), or
-- a BITS pseudo-type
type
| "BITS" "{" NamedBits "}"
NamedBits ::= NamedBit
| NamedBits "," NamedBit
NamedBit ::= identifier "(" number ")" -- number is nonnegative
AccessPart ::=
"MIN-ACCESS" Access
| empty
Access ::=
"not-accessible"
| "accessible-for-notify"
| "read-only"
| "read-write"
| "read-create"
-- a character string as defined in [2]
Text ::= value(IA5String)
END
-- definitions for capabilities statements
AGENT-CAPABILITIES MACRO ::=
BEGIN
TYPE NOTATION ::=
"PRODUCT-RELEASE" Text
"STATUS" Status
"DESCRIPTION" Text
ReferPart
ModulePart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
Status ::=
"current"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
ModulePart ::=
Modules
| empty
Modules ::=
Module
| Modules Module
Module ::=
-- name of module --
"SUPPORTS" ModuleName
"INCLUDES" "{" Groups "}"
VariationPart
ModuleName ::=
-- identifier must start with uppercase letter
identifier ModuleIdentifier
ModuleIdentifier ::=
value(OBJECT IDENTIFIER)
| empty
Groups ::=
Group
| Groups "," Group
Group ::=
value(OBJECT IDENTIFIER)
VariationPart ::=
Variations
| empty
Variations ::=
Variation
| Variations Variation
Variation ::=
ObjectVariation
| NotificationVariation
NotificationVariation ::=
"VARIATION" value(NotificationName)
AccessPart
"DESCRIPTION" Text
ObjectVariation ::=
"VARIATION" value(ObjectName)
SyntaxPart
WriteSyntaxPart
AccessPart
CreationPart
DefValPart
"DESCRIPTION" Text
-- must be a refinement for object's SYNTAX clause
SyntaxPart ::= "SYNTAX" Syntax
| empty
WriteSyntaxPart ::= "WRITE-SYNTAX" Syntax
| empty
Syntax ::= -- Must be one of the following:
-- a base type (or its refinement),
-- a textual convention (or its refinement), or
-- a BITS pseudo-type
type
| "BITS" "{" NamedBits "}"
NamedBits ::= NamedBit
| NamedBits "," NamedBit
NamedBit ::= identifier "(" number ")" -- number is nonnegative
AccessPart ::=
"ACCESS" Access
| empty
Access ::=
"not-implemented"
-- only "not-implemented" for notifications
| "accessible-for-notify"
| "read-only"
| "read-write"
| "read-create"
-- following is for backward-compatibility only
| "write-only"
CreationPart ::=
"CREATION-REQUIRES" "{" Cells "}"
| empty
Cells ::=
Cell
| Cells "," Cell
Cell ::=
value(ObjectName)
DefValPart ::= "DEFVAL" "{" Defvalue "}"
| empty
Defvalue ::= -- must be valid for the object's syntax
-- in this macro's SYNTAX clause, if present,
-- or if not, in object's OBJECT-TYPE macro
value(ObjectSyntax)
| "{" BitsValue "}"
BitsValue ::= BitNames
| empty
BitNames ::= BitName
| BitNames "," BitName
BitName ::= identifier
-- a character string as defined in [2]
Text ::= value(IA5String)
END
END

View File

@@ -1,904 +0,0 @@
SNMPv2-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
TimeTicks, Counter32, snmpModules, mib-2
FROM SNMPv2-SMI
DisplayString, TestAndIncr, TimeStamp
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF;
snmpMIB MODULE-IDENTITY
LAST-UPDATED "200210160000Z"
ORGANIZATION "IETF SNMPv3 Working Group"
CONTACT-INFO
"WG-EMail: snmpv3@lists.tislabs.com
Subscribe: snmpv3-request@lists.tislabs.com
Co-Chair: Russ Mundy
Network Associates Laboratories
postal: 15204 Omega Drive, Suite 300
Rockville, MD 20850-4601
USA
EMail: mundy@tislabs.com
phone: +1 301 947-7107
Co-Chair: David Harrington
Enterasys Networks
postal: 35 Industrial Way
P. O. Box 5005
Rochester, NH 03866-5005
USA
EMail: dbh@enterasys.com
phone: +1 603 337-2614
Editor: Randy Presuhn
BMC Software, Inc.
postal: 2141 North First Street
San Jose, CA 95131
USA
EMail: randy_presuhn@bmc.com
phone: +1 408 546-1006"
DESCRIPTION
"The MIB module for SNMP entities.
Copyright (C) The Internet Society (2002). This
version of this MIB module is part of RFC 3418;
see the RFC itself for full legal notices.
"
REVISION "200210160000Z"
DESCRIPTION
"This revision of this MIB module was published as
RFC 3418."
REVISION "199511090000Z"
DESCRIPTION
"This revision of this MIB module was published as
RFC 1907."
REVISION "199304010000Z"
DESCRIPTION
"The initial revision of this MIB module was published
as RFC 1450."
::= { snmpModules 1 }
snmpMIBObjects OBJECT IDENTIFIER ::= { snmpMIB 1 }
-- ::= { snmpMIBObjects 1 } this OID is obsolete
-- ::= { snmpMIBObjects 2 } this OID is obsolete
-- ::= { snmpMIBObjects 3 } this OID is obsolete
-- the System group
--
-- a collection of objects common to all managed systems.
system OBJECT IDENTIFIER ::= { mib-2 1 }
sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of the entity. This value should
include the full name and version identification of
the system's hardware type, software operating-system,
and networking software."
::= { system 1 }
sysObjectID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor's authoritative identification of the
network management subsystem contained in the entity.
This value is allocated within the SMI enterprises
subtree (1.3.6.1.4.1) and provides an easy and
unambiguous means for determining `what kind of box' is
being managed. For example, if vendor `Flintstones,
Inc.' was assigned the subtree 1.3.6.1.4.1.424242,
it could assign the identifier 1.3.6.1.4.1.424242.1.1
to its `Fred Router'."
::= { system 2 }
sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized."
::= { system 3 }
sysContact OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The textual identification of the contact person for
this managed node, together with information on how
to contact this person. If no contact information is
known, the value is the zero-length string."
::= { system 4 }
sysName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"An administratively-assigned name for this managed
node. By convention, this is the node's fully-qualified
domain name. If the name is unknown, the value is
the zero-length string."
::= { system 5 }
sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The physical location of this node (e.g., 'telephone
closet, 3rd floor'). If the location is unknown, the
value is the zero-length string."
::= { system 6 }
sysServices OBJECT-TYPE
SYNTAX INTEGER (0..127)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A value which indicates the set of services that this
entity may potentially offer. The value is a sum.
This sum initially takes the value zero. Then, for
each layer, L, in the range 1 through 7, that this node
performs transactions for, 2 raised to (L - 1) is added
to the sum. For example, a node which performs only
routing functions would have a value of 4 (2^(3-1)).
In contrast, a node which is a host offering application
services would have a value of 72 (2^(4-1) + 2^(7-1)).
Note that in the context of the Internet suite of
protocols, values should be calculated accordingly:
layer functionality
1 physical (e.g., repeaters)
2 datalink/subnetwork (e.g., bridges)
3 internet (e.g., supports the IP)
4 end-to-end (e.g., supports the TCP)
7 applications (e.g., supports the SMTP)
For systems including OSI protocols, layers 5 and 6
may also be counted."
::= { system 7 }
-- object resource information
--
-- a collection of objects which describe the SNMP entity's
-- (statically and dynamically configurable) support of
-- various MIB modules.
sysORLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time of the most recent
change in state or value of any instance of sysORID."
::= { system 8 }
sysORTable OBJECT-TYPE
SYNTAX SEQUENCE OF SysOREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table listing the capabilities of
the local SNMP application acting as a command
responder with respect to various MIB modules.
SNMP entities having dynamically-configurable support
of MIB modules will have a dynamically-varying number
of conceptual rows."
::= { system 9 }
sysOREntry OBJECT-TYPE
SYNTAX SysOREntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the sysORTable."
INDEX { sysORIndex }
::= { sysORTable 1 }
SysOREntry ::= SEQUENCE {
sysORIndex INTEGER,
sysORID OBJECT IDENTIFIER,
sysORDescr DisplayString,
sysORUpTime TimeStamp
}
sysORIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The auxiliary variable used for identifying instances
of the columnar objects in the sysORTable."
::= { sysOREntry 1 }
sysORID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An authoritative identification of a capabilities
statement with respect to various MIB modules supported
by the local SNMP application acting as a command
responder."
::= { sysOREntry 2 }
sysORDescr OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of the capabilities identified
by the corresponding instance of sysORID."
::= { sysOREntry 3 }
sysORUpTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time this conceptual
row was last instantiated."
::= { sysOREntry 4 }
-- the SNMP group
--
-- a collection of objects providing basic instrumentation and
-- control of an SNMP entity.
snmp OBJECT IDENTIFIER ::= { mib-2 11 }
snmpInPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of messages delivered to the SNMP
entity from the transport service."
::= { snmp 1 }
snmpInBadVersions OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of SNMP messages which were delivered
to the SNMP entity and were for an unsupported SNMP
version."
::= { snmp 3 }
snmpInBadCommunityNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of community-based SNMP messages (for
example, SNMPv1) delivered to the SNMP entity which
used an SNMP community name not known to said entity.
Also, implementations which authenticate community-based
SNMP messages using check(s) in addition to matching
the community name (for example, by also checking
whether the message originated from a transport address
allowed to use a specified community name) MAY include
in this value the number of messages which failed the
additional check(s). It is strongly RECOMMENDED that
the documentation for any security model which is used
to authenticate community-based SNMP messages specify
the precise conditions that contribute to this value."
::= { snmp 4 }
snmpInBadCommunityUses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of community-based SNMP messages (for
example, SNMPv1) delivered to the SNMP entity which
represented an SNMP operation that was not allowed for
the SNMP community named in the message. The precise
conditions under which this counter is incremented
(if at all) depend on how the SNMP entity implements
its access control mechanism and how its applications
interact with that access control mechanism. It is
strongly RECOMMENDED that the documentation for any
access control mechanism which is used to control access
to and visibility of MIB instrumentation specify the
precise conditions that contribute to this value."
::= { snmp 5 }
snmpInASNParseErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of ASN.1 or BER errors encountered by
the SNMP entity when decoding received SNMP messages."
::= { snmp 6 }
snmpEnableAuthenTraps OBJECT-TYPE
SYNTAX INTEGER { enabled(1), disabled(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Indicates whether the SNMP entity is permitted to
generate authenticationFailure traps. The value of this
object overrides any configuration information; as such,
it provides a means whereby all authenticationFailure
traps may be disabled.
Note that it is strongly recommended that this object
be stored in non-volatile memory so that it remains
constant across re-initializations of the network
management system."
::= { snmp 30 }
snmpSilentDrops OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of Confirmed Class PDUs (such as
GetRequest-PDUs, GetNextRequest-PDUs,
GetBulkRequest-PDUs, SetRequest-PDUs, and
InformRequest-PDUs) delivered to the SNMP entity which
were silently dropped because the size of a reply
containing an alternate Response Class PDU (such as a
Response-PDU) with an empty variable-bindings field
was greater than either a local constraint or the
maximum message size associated with the originator of
the request."
::= { snmp 31 }
snmpProxyDrops OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of Confirmed Class PDUs
(such as GetRequest-PDUs, GetNextRequest-PDUs,
GetBulkRequest-PDUs, SetRequest-PDUs, and
InformRequest-PDUs) delivered to the SNMP entity which
were silently dropped because the transmission of
the (possibly translated) message to a proxy target
failed in a manner (other than a time-out) such that
no Response Class PDU (such as a Response-PDU) could
be returned."
::= { snmp 32 }
-- information for notifications
--
-- a collection of objects which allow the SNMP entity, when
-- supporting a notification originator application,
-- to be configured to generate SNMPv2-Trap-PDUs.
snmpTrap OBJECT IDENTIFIER ::= { snmpMIBObjects 4 }
snmpTrapOID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"The authoritative identification of the notification
currently being sent. This variable occurs as
the second varbind in every SNMPv2-Trap-PDU and
InformRequest-PDU."
::= { snmpTrap 1 }
-- ::= { snmpTrap 2 } this OID is obsolete
snmpTrapEnterprise OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"The authoritative identification of the enterprise
associated with the trap currently being sent. When an
SNMP proxy agent is mapping an RFC1157 Trap-PDU
into a SNMPv2-Trap-PDU, this variable occurs as the
last varbind."
::= { snmpTrap 3 }
-- ::= { snmpTrap 4 } this OID is obsolete
-- well-known traps
snmpTraps OBJECT IDENTIFIER ::= { snmpMIBObjects 5 }
coldStart NOTIFICATION-TYPE
STATUS current
DESCRIPTION
"A coldStart trap signifies that the SNMP entity,
supporting a notification originator application, is
reinitializing itself and that its configuration may
have been altered."
::= { snmpTraps 1 }
warmStart NOTIFICATION-TYPE
STATUS current
DESCRIPTION
"A warmStart trap signifies that the SNMP entity,
supporting a notification originator application,
is reinitializing itself such that its configuration
is unaltered."
::= { snmpTraps 2 }
-- Note the linkDown NOTIFICATION-TYPE ::= { snmpTraps 3 }
-- and the linkUp NOTIFICATION-TYPE ::= { snmpTraps 4 }
-- are defined in RFC 2863 [RFC2863]
authenticationFailure NOTIFICATION-TYPE
STATUS current
DESCRIPTION
"An authenticationFailure trap signifies that the SNMP
entity has received a protocol message that is not
properly authenticated. While all implementations
of SNMP entities MAY be capable of generating this
trap, the snmpEnableAuthenTraps object indicates
whether this trap will be generated."
::= { snmpTraps 5 }
-- Note the egpNeighborLoss notification is defined
-- as { snmpTraps 6 } in RFC 1213
-- the set group
--
-- a collection of objects which allow several cooperating
-- command generator applications to coordinate their use of the
-- set operation.
snmpSet OBJECT IDENTIFIER ::= { snmpMIBObjects 6 }
snmpSetSerialNo OBJECT-TYPE
SYNTAX TestAndIncr
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"An advisory lock used to allow several cooperating
command generator applications to coordinate their
use of the SNMP set operation.
This object is used for coarse-grain coordination.
To achieve fine-grain coordination, one or more similar
objects might be defined within each MIB group, as
appropriate."
::= { snmpSet 1 }
-- conformance information
snmpMIBConformance
OBJECT IDENTIFIER ::= { snmpMIB 2 }
snmpMIBCompliances
OBJECT IDENTIFIER ::= { snmpMIBConformance 1 }
snmpMIBGroups OBJECT IDENTIFIER ::= { snmpMIBConformance 2 }
-- compliance statements
-- ::= { snmpMIBCompliances 1 } this OID is obsolete
snmpBasicCompliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION
"The compliance statement for SNMPv2 entities which
implement the SNMPv2 MIB.
This compliance statement is replaced by
snmpBasicComplianceRev2."
MODULE -- this module
MANDATORY-GROUPS { snmpGroup, snmpSetGroup, systemGroup,
snmpBasicNotificationsGroup }
GROUP snmpCommunityGroup
DESCRIPTION
"This group is mandatory for SNMPv2 entities which
support community-based authentication."
::= { snmpMIBCompliances 2 }
snmpBasicComplianceRev2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which
implement this MIB module."
MODULE -- this module
MANDATORY-GROUPS { snmpGroup, snmpSetGroup, systemGroup,
snmpBasicNotificationsGroup }
GROUP snmpCommunityGroup
DESCRIPTION
"This group is mandatory for SNMP entities which
support community-based authentication."
GROUP snmpWarmStartNotificationGroup
DESCRIPTION
"This group is mandatory for an SNMP entity which
supports command responder applications, and is
able to reinitialize itself such that its
configuration is unaltered."
::= { snmpMIBCompliances 3 }
-- units of conformance
-- ::= { snmpMIBGroups 1 } this OID is obsolete
-- ::= { snmpMIBGroups 2 } this OID is obsolete
-- ::= { snmpMIBGroups 3 } this OID is obsolete
-- ::= { snmpMIBGroups 4 } this OID is obsolete
snmpGroup OBJECT-GROUP
OBJECTS { snmpInPkts,
snmpInBadVersions,
snmpInASNParseErrs,
snmpSilentDrops,
snmpProxyDrops,
snmpEnableAuthenTraps }
STATUS current
DESCRIPTION
"A collection of objects providing basic instrumentation
and control of an SNMP entity."
::= { snmpMIBGroups 8 }
snmpCommunityGroup OBJECT-GROUP
OBJECTS { snmpInBadCommunityNames,
snmpInBadCommunityUses }
STATUS current
DESCRIPTION
"A collection of objects providing basic instrumentation
of a SNMP entity which supports community-based
authentication."
::= { snmpMIBGroups 9 }
snmpSetGroup OBJECT-GROUP
OBJECTS { snmpSetSerialNo }
STATUS current
DESCRIPTION
"A collection of objects which allow several cooperating
command generator applications to coordinate their
use of the set operation."
::= { snmpMIBGroups 5 }
systemGroup OBJECT-GROUP
OBJECTS { sysDescr, sysObjectID, sysUpTime,
sysContact, sysName, sysLocation,
sysServices,
sysORLastChange, sysORID,
sysORUpTime, sysORDescr }
STATUS current
DESCRIPTION
"The system group defines objects which are common to all
managed systems."
::= { snmpMIBGroups 6 }
snmpBasicNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS { coldStart, authenticationFailure }
STATUS current
DESCRIPTION
"The basic notifications implemented by an SNMP entity
supporting command responder applications."
::= { snmpMIBGroups 7 }
snmpWarmStartNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS { warmStart }
STATUS current
DESCRIPTION
"An additional notification for an SNMP entity supporting
command responder applications, if it is able to reinitialize
itself such that its configuration is unaltered."
::= { snmpMIBGroups 11 }
snmpNotificationGroup OBJECT-GROUP
OBJECTS { snmpTrapOID, snmpTrapEnterprise }
STATUS current
DESCRIPTION
"These objects are required for entities
which support notification originator applications."
::= { snmpMIBGroups 12 }
-- definitions in RFC 1213 made obsolete by the inclusion of a
-- subset of the snmp group in this MIB
snmpOutPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Messages which were
passed from the SNMP protocol entity to the
transport service."
::= { snmp 2 }
-- { snmp 7 } is not used
snmpInTooBigs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field was
`tooBig'."
::= { snmp 8 }
snmpInNoSuchNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field was
`noSuchName'."
::= { snmp 9 }
snmpInBadValues OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field was
`badValue'."
::= { snmp 10 }
snmpInReadOnlys OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number valid SNMP PDUs which were delivered
to the SNMP protocol entity and for which the value
of the error-status field was `readOnly'. It should
be noted that it is a protocol error to generate an
SNMP PDU which contains the value `readOnly' in the
error-status field, as such this object is provided
as a means of detecting incorrect implementations of
the SNMP."
::= { snmp 11 }
snmpInGenErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were delivered
to the SNMP protocol entity and for which the value
of the error-status field was `genErr'."
::= { snmp 12 }
snmpInTotalReqVars OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of MIB objects which have been
retrieved successfully by the SNMP protocol entity
as the result of receiving valid SNMP Get-Request
and Get-Next PDUs."
::= { snmp 13 }
snmpInTotalSetVars OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of MIB objects which have been
altered successfully by the SNMP protocol entity as
the result of receiving valid SNMP Set-Request PDUs."
::= { snmp 14 }
snmpInGetRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Request PDUs which
have been accepted and processed by the SNMP
protocol entity."
::= { snmp 15 }
snmpInGetNexts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Next PDUs which have been
accepted and processed by the SNMP protocol entity."
::= { snmp 16 }
snmpInSetRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Set-Request PDUs which
have been accepted and processed by the SNMP protocol
entity."
::= { snmp 17 }
snmpInGetResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Response PDUs which
have been accepted and processed by the SNMP protocol
entity."
::= { snmp 18 }
snmpInTraps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Trap PDUs which have been
accepted and processed by the SNMP protocol entity."
::= { snmp 19 }
snmpOutTooBigs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were generated
by the SNMP protocol entity and for which the value
of the error-status field was `tooBig.'"
::= { snmp 20 }
snmpOutNoSuchNames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were generated
by the SNMP protocol entity and for which the value
of the error-status was `noSuchName'."
::= { snmp 21 }
snmpOutBadValues OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were generated
by the SNMP protocol entity and for which the value
of the error-status field was `badValue'."
::= { snmp 22 }
-- { snmp 23 } is not used
snmpOutGenErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP PDUs which were generated
by the SNMP protocol entity and for which the value
of the error-status field was `genErr'."
::= { snmp 24 }
snmpOutGetRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Request PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 25 }
snmpOutGetNexts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Next PDUs which have
been generated by the SNMP protocol entity."
::= { snmp 26 }
snmpOutSetRequests OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Set-Request PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 27 }
snmpOutGetResponses OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Get-Response PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 28 }
snmpOutTraps OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS obsolete
DESCRIPTION
"The total number of SNMP Trap PDUs which have
been generated by the SNMP protocol entity."
::= { snmp 29 }
snmpObsoleteGroup OBJECT-GROUP
OBJECTS { snmpOutPkts, snmpInTooBigs, snmpInNoSuchNames,
snmpInBadValues, snmpInReadOnlys, snmpInGenErrs,
snmpInTotalReqVars, snmpInTotalSetVars,
snmpInGetRequests, snmpInGetNexts, snmpInSetRequests,
snmpInGetResponses, snmpInTraps, snmpOutTooBigs,
snmpOutNoSuchNames, snmpOutBadValues,
snmpOutGenErrs, snmpOutGetRequests, snmpOutGetNexts,
snmpOutSetRequests, snmpOutGetResponses, snmpOutTraps
}
STATUS obsolete
DESCRIPTION
"A collection of objects from RFC 1213 made obsolete
by this MIB module."
::= { snmpMIBGroups 10 }
END

View File

@@ -1,36 +0,0 @@
SNMPv2-SMI DEFINITIONS ::= BEGIN
-- the path to the root
org OBJECT IDENTIFIER ::= { iso 3 }
dod OBJECT IDENTIFIER ::= { org 6 }
internet OBJECT IDENTIFIER ::= { dod 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }
transmission OBJECT IDENTIFIER ::= { mib-2 10 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }
security OBJECT IDENTIFIER ::= { internet 5 }
snmpV2 OBJECT IDENTIFIER ::= { internet 6 }
-- transport domains
snmpDomains OBJECT IDENTIFIER ::= { snmpV2 1 }
-- transport proxies
snmpProxys OBJECT IDENTIFIER ::= { snmpV2 2 }
-- module identities
snmpModules OBJECT IDENTIFIER ::= { snmpV2 3 }
END

View File

@@ -1,752 +0,0 @@
SNMPv2-TC DEFINITIONS ::= BEGIN
IMPORTS
ObjectSyntax, TimeTicks
FROM SNMPv2-SMI;
-- definition of textual conventions
TEXTUAL-CONVENTION MACRO ::=
BEGIN
TYPE NOTATION ::=
DisplayPart
"STATUS" Status
"DESCRIPTION" Text
ReferPart
"SYNTAX" Syntax
VALUE NOTATION ::=
value(VALUE Syntax) -- adapted ASN.1
DisplayPart ::=
"DISPLAY-HINT" Text
| empty
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
-- a character string as defined in [2]
Text ::= value(IA5String)
Syntax ::= -- Must be one of the following:
-- a base type (or its refinement), or
-- a BITS pseudo-type
type
| "BITS" "{" NamedBits "}"
NamedBits ::= NamedBit
| NamedBits "," NamedBit
NamedBit ::= identifier "(" number ")" -- number is nonnegative
END
DisplayString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION
"Represents textual information taken from the NVT ASCII
character set, as defined in pages 4, 10-11 of RFC 854.
To summarize RFC 854, the NVT ASCII repertoire specifies:
- the use of character codes 0-127 (decimal)
- the graphics characters (32-126) are interpreted as
US ASCII
- NUL, LF, CR, BEL, BS, HT, VT and FF have the special
meanings specified in RFC 854
- the other 25 codes have no standard interpretation
- the sequence 'CR LF' means newline
- the sequence 'CR NUL' means carriage-return
- an 'LF' not preceded by a 'CR' means moving to the
same column on the next line.
- the sequence 'CR x' for any x other than LF or NUL is
illegal. (Note that this also means that a string may
end with either 'CR LF' or 'CR NUL', but not with CR.)
Any object defined using this syntax may not exceed 255
characters in length."
SYNTAX OCTET STRING (SIZE (0..255))
PhysAddress ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1x:"
STATUS current
DESCRIPTION
"Represents media- or physical-level addresses."
SYNTAX OCTET STRING
MacAddress ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1x:"
STATUS current
DESCRIPTION
"Represents an 802 MAC address represented in the
`canonical' order defined by IEEE 802.1a, i.e., as if it
were transmitted least significant bit first, even though
802.5 (in contrast to other 802.x protocols) requires MAC
addresses to be transmitted most significant bit first."
SYNTAX OCTET STRING (SIZE (6))
TruthValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents a boolean value."
SYNTAX INTEGER { true(1), false(2) }
TestAndIncr ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents integer-valued information used for atomic
operations. When the management protocol is used to specify
that an object instance having this syntax is to be
modified, the new value supplied via the management protocol
must precisely match the value presently held by the
instance. If not, the management protocol set operation
fails with an error of `inconsistentValue'. Otherwise, if
the current value is the maximum value of 2^31-1 (2147483647
decimal), then the value held by the instance is wrapped to
zero; otherwise, the value held by the instance is
incremented by one. (Note that regardless of whether the
management protocol set operation succeeds, the variable-
binding in the request and response PDUs are identical.)
The value of the ACCESS clause for objects having this
syntax is either `read-write' or `read-create'. When an
instance of a columnar object having this syntax is created,
any value may be supplied via the management protocol.
When the network management portion of the system is re-
initialized, the value of every object instance having this
syntax must either be incremented from its value prior to
the re-initialization, or (if the value prior to the re-
initialization is unknown) be set to a pseudo-randomly
generated value."
SYNTAX INTEGER (0..2147483647)
AutonomousType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents an independently extensible type identification
value. It may, for example, indicate a particular sub-tree
with further MIB definitions, or define a particular type of
protocol or hardware."
SYNTAX OBJECT IDENTIFIER
InstancePointer ::= TEXTUAL-CONVENTION
STATUS obsolete
DESCRIPTION
"A pointer to either a specific instance of a MIB object or
a conceptual row of a MIB table in the managed device. In
the latter case, by convention, it is the name of the
particular instance of the first accessible columnar object
in the conceptual row.
The two uses of this textual convention are replaced by
VariablePointer and RowPointer, respectively."
SYNTAX OBJECT IDENTIFIER
VariablePointer ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A pointer to a specific object instance. For example,
sysContact.0 or ifInOctets.3."
SYNTAX OBJECT IDENTIFIER
RowPointer ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents a pointer to a conceptual row. The value is the
name of the instance of the first accessible columnar object
in the conceptual row.
For example, ifIndex.3 would point to the 3rd row in the
ifTable (note that if ifIndex were not-accessible, then
ifDescr.3 would be used instead)."
SYNTAX OBJECT IDENTIFIER
RowStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The RowStatus textual convention is used to manage the
creation and deletion of conceptual rows, and is used as the
value of the SYNTAX clause for the status column of a
conceptual row (as described in Section 7.7.1 of [2].)
The status column has six defined values:
- `active', which indicates that the conceptual row is
available for use by the managed device;
- `notInService', which indicates that the conceptual
row exists in the agent, but is unavailable for use by
the managed device (see NOTE below);
- `notReady', which indicates that the conceptual row
exists in the agent, but is missing information
necessary in order to be available for use by the
managed device;
- `createAndGo', which is supplied by a management
station wishing to create a new instance of a
conceptual row and to have its status automatically set
to active, making it available for use by the managed
device;
- `createAndWait', which is supplied by a management
station wishing to create a new instance of a
conceptual row (but not make it available for use by
the managed device); and,
- `destroy', which is supplied by a management station
wishing to delete all of the instances associated with
an existing conceptual row.
Whereas five of the six values (all except `notReady') may
be specified in a management protocol set operation, only
three values will be returned in response to a management
protocol retrieval operation: `notReady', `notInService' or
`active'. That is, when queried, an existing conceptual row
has only three states: it is either available for use by the
managed device (the status column has value `active'); it is
not available for use by the managed device, though the
agent has sufficient information to make it so (the status
column has value `notInService'); or, it is not available
for use by the managed device, and an attempt to make it so
would fail because the agent has insufficient information
(the state column has value `notReady').
NOTE WELL
This textual convention may be used for a MIB table,
irrespective of whether the values of that table's
conceptual rows are able to be modified while it is
active, or whether its conceptual rows must be taken
out of service in order to be modified. That is, it is
the responsibility of the DESCRIPTION clause of the
status column to specify whether the status column must
not be `active' in order for the value of some other
column of the same conceptual row to be modified. If
such a specification is made, affected columns may be
changed by an SNMP set PDU if the RowStatus would not
be equal to `active' either immediately before or after
processing the PDU. In other words, if the PDU also
contained a varbind that would change the RowStatus
value, the column in question may be changed if the
RowStatus was not equal to `active' as the PDU was
received, or if the varbind sets the status to a value
other than 'active'.
Also note that whenever any elements of a row exist, the
RowStatus column must also exist.
To summarize the effect of having a conceptual row with a
status column having a SYNTAX clause value of RowStatus,
consider the following state diagram:
STATE
+--------------+-----------+-------------+-------------
| A | B | C | D
| |status col.|status column|
|status column | is | is |status column
ACTION |does not exist| notReady | notInService| is active
--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
| Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
| | or | |
| | | |
| |see 2 ->D| ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
| | or | | or
| | | |
| |see 3 ->C| ->C|wrongValue
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError
column to | | | |
destroy | ->A| ->A| ->A| ->A
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------
(1) goto B or C, depending on information available to the
agent.
(2) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto D.
(3) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto C.
(4) at the discretion of the agent, the return value may be
either:
inconsistentName: because the agent does not choose to
create such an instance when the corresponding
RowStatus instance does not exist, or
inconsistentValue: if the supplied value is
inconsistent with the state of some other MIB object's
value, or
noError: because the agent chooses to create the
instance.
If noError is returned, then the instance of the status
column must also be created, and the new state is B or C,
depending on the information available to the agent. If
inconsistentName or inconsistentValue is returned, the row
remains in state A.
(5) depending on the MIB definition for the column/table,
either noError or inconsistentValue may be returned.
NOTE: Other processing of the set request may result in a
response other than noError being returned, e.g.,
wrongValue, noCreation, etc.
There are four potential interactions when creating a
conceptual row: selecting an instance-identifier which is
not in use; creating the conceptual row; initializing any
objects for which the agent does not supply a default; and,
making the conceptual row available for use by the managed
device.
Interaction 1: Selecting an Instance-Identifier
The algorithm used to select an instance-identifier varies
for each conceptual row. In some cases, the instance-
identifier is semantically significant, e.g., the
destination address of a route, and a management station
selects the instance-identifier according to the semantics.
In other cases, the instance-identifier is used solely to
distinguish conceptual rows, and a management station
without specific knowledge of the conceptual row might
examine the instances present in order to determine an
unused instance-identifier. (This approach may be used, but
it is often highly sub-optimal; however, it is also a
questionable practice for a naive management station to
attempt conceptual row creation.)
Alternately, the MIB module which defines the conceptual row
might provide one or more objects which provide assistance
in determining an unused instance-identifier. For example,
if the conceptual row is indexed by an integer-value, then
an object having an integer-valued SYNTAX clause might be
defined for such a purpose, allowing a management station to
issue a management protocol retrieval operation. In order
to avoid unnecessary collisions between competing management
stations, `adjacent' retrievals of this object should be
different.
Finally, the management station could select a pseudo-random
number to use as the index. In the event that this index
was already in use and an inconsistentValue was returned in
response to the management protocol set operation, the
management station should simply select a new pseudo-random
number and retry the operation.
A MIB designer should choose between the two latter
algorithms based on the size of the table (and therefore the
efficiency of each algorithm). For tables in which a large
number of entries are expected, it is recommended that a MIB
object be defined that returns an acceptable index for
creation. For tables with small numbers of entries, it is
recommended that the latter pseudo-random index mechanism be
used.
Interaction 2: Creating the Conceptual Row
Once an unused instance-identifier has been selected, the
management station determines if it wishes to create and
activate the conceptual row in one transaction or in a
negotiated set of interactions.
Interaction 2a: Creating and Activating the Conceptual Row
The management station must first determine the column
requirements, i.e., it must determine those columns for
which it must or must not provide values. Depending on the
complexity of the table and the management station's
knowledge of the agent's capabilities, this determination
can be made locally by the management station. Alternately,
the management station issues a management protocol get
operation to examine all columns in the conceptual row that
it wishes to create. In response, for each column, there
are three possible outcomes:
- a value is returned, indicating that some other
management station has already created this conceptual
row. We return to interaction 1.
- the exception `noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. For those
columns to which the agent provides read-create access,
the `noSuchInstance' exception tells the management
station that it should supply a value for this column
when the conceptual row is to be created.
- the exception `noSuchObject' is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station can not issue any
management protocol set operations to create an
instance of this column.
Once the column requirements have been determined, a
management protocol set operation is accordingly issued.
This operation also sets the new instance of the status
column to `createAndGo'.
When the agent processes the set operation, it verifies that
it has sufficient information to make the conceptual row
available for use by the managed device. The information
available to the agent is provided by two sources: the
management protocol set operation which creates the
conceptual row, and, implementation-specific defaults
supplied by the agent (note that an agent must provide
implementation-specific defaults for at least those objects
which it implements as read-only). If there is sufficient
information available, then the conceptual row is created, a
`noError' response is returned, the status column is set to
`active', and no further interactions are necessary (i.e.,
interactions 3 and 4 are skipped). If there is insufficient
information, then the conceptual row is not created, and the
set operation fails with an error of `inconsistentValue'.
On this error, the management station can issue a management
protocol retrieval operation to determine if this was
because it failed to specify a value for a required column,
or, because the selected instance of the status column
already existed. In the latter case, we return to
interaction 1. In the former case, the management station
can re-issue the set operation with the additional
information, or begin interaction 2 again using
`createAndWait' in order to negotiate creation of the
conceptual row.
NOTE WELL
Regardless of the method used to determine the column
requirements, it is possible that the management
station might deem a column necessary when, in fact,
the agent will not allow that particular columnar
instance to be created or written. In this case, the
management protocol set operation will fail with an
error such as `noCreation' or `notWritable'. In this
case, the management station decides whether it needs
to be able to set a value for that particular columnar
instance. If not, the management station re-issues the
management protocol set operation, but without setting
a value for that particular columnar instance;
otherwise, the management station aborts the row
creation algorithm.
Interaction 2b: Negotiating the Creation of the Conceptual
Row
The management station issues a management protocol set
operation which sets the desired instance of the status
column to `createAndWait'. If the agent is unwilling to
process a request of this sort, the set operation fails with
an error of `wrongValue'. (As a consequence, such an agent
must be prepared to accept a single management protocol set
operation, i.e., interaction 2a above, containing all of the
columns indicated by its column requirements.) Otherwise,
the conceptual row is created, a `noError' response is
returned, and the status column is immediately set to either
`notInService' or `notReady', depending on whether it has
sufficient information to make the conceptual row available
for use by the managed device. If there is sufficient
information available, then the status column is set to
`notInService'; otherwise, if there is insufficient
information, then the status column is set to `notReady'.
Regardless, we proceed to interaction 3.
Interaction 3: Initializing non-defaulted Objects
The management station must now determine the column
requirements. It issues a management protocol get operation
to examine all columns in the created conceptual row. In
the response, for each column, there are three possible
outcomes:
- a value is returned, indicating that the agent
implements the object-type associated with this column
and had sufficient information to provide a value. For
those columns to which the agent provides read-create
access (and for which the agent allows their values to
be changed after their creation), a value return tells
the management station that it may issue additional
management protocol set operations, if it desires, in
order to change the value associated with this column.
- the exception `noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. However,
the agent does not have sufficient information to
provide a value, and until a value is provided, the
conceptual row may not be made available for use by the
managed device. For those columns to which the agent
provides read-create access, the `noSuchInstance'
exception tells the management station that it must
issue additional management protocol set operations, in
order to provide a value associated with this column.
- the exception `noSuchObject' is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station can not issue any
management protocol set operations to create an
instance of this column.
If the value associated with the status column is
`notReady', then the management station must first deal with
all `noSuchInstance' columns, if any. Having done so, the
value of the status column becomes `notInService', and we
proceed to interaction 4.
Interaction 4: Making the Conceptual Row Available
Once the management station is satisfied with the values
associated with the columns of the conceptual row, it issues
a management protocol set operation to set the status column
to `active'. If the agent has sufficient information to
make the conceptual row available for use by the managed
device, the management protocol set operation succeeds (a
`noError' response is returned). Otherwise, the management
protocol set operation fails with an error of
`inconsistentValue'.
NOTE WELL
A conceptual row having a status column with value
`notInService' or `notReady' is unavailable to the
managed device. As such, it is possible for the
managed device to create its own instances during the
time between the management protocol set operation
which sets the status column to `createAndWait' and the
management protocol set operation which sets the status
column to `active'. In this case, when the management
protocol set operation is issued to set the status
column to `active', the values held in the agent
supersede those used by the managed device.
If the management station is prevented from setting the
status column to `active' (e.g., due to management station
or network failure) the conceptual row will be left in the
`notInService' or `notReady' state, consuming resources
indefinitely. The agent must detect conceptual rows that
have been in either state for an abnormally long period of
time and remove them. It is the responsibility of the
DESCRIPTION clause of the status column to indicate what an
abnormally long period of time would be.
This period of time should be long enough to allow for human
response time (including `think time') between the creation
of the conceptual row and the setting of the status to
`active'. In the absense of such information in the
DESCRIPTION clause, it is suggested that this period be
approximately 5 minutes in length.
This removal action applies not only to newly-created rows,
but also to previously active rows which are set to, and
left in, the notInService state for a prolonged period
exceeding that which is considered normal for such a
conceptual row.
Conceptual Row Suspension
When a conceptual row is `active', the management station
may issue a management protocol set operation which sets the
instance of the status column to `notInService'. If the
agent is unwilling to do so, the set operation fails with an
error of `wrongValue'. Otherwise, the conceptual row is
taken out of service, and a `noError' response is returned.
It is the responsibility of the DESCRIPTION clause of the
status column to indicate under what circumstances the
status column should be taken out of service (e.g., in order
for the value of some other column of the same conceptual
row to be modified).
Conceptual Row Deletion
For deletion of conceptual rows, a management protocol set
operation is issued which sets the instance of the status
column to `destroy'. This request may be made regardless of
the current value of the status column (e.g., it is possible
to delete conceptual rows which are either `notReady',
`notInService' or `active'.) If the operation succeeds, then
all instances associated with the conceptual row are
immediately removed."
SYNTAX INTEGER {
-- the following two values are states:
-- these values may be read or written
active(1),
notInService(2),
-- the following value is a state:
-- this value may be read, but not written
notReady(3),
-- the following three values are
-- actions: these values may be written,
-- but are never read
createAndGo(4),
createAndWait(5),
destroy(6)
}
TimeStamp ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The value of the sysUpTime object at which a specific
occurrence happened. The specific occurrence must be
defined in the description of any object defined using this
type."
SYNTAX TimeTicks
TimeInterval ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A period of time, measured in units of 0.01 seconds."
SYNTAX INTEGER (0..2147483647)
DateAndTime ::= TEXTUAL-CONVENTION
DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"
STATUS current
DESCRIPTION
"A date-time specification.
field octets contents range
----- ------ -------- -----
1 1-2 year 0..65536
2 3 month 1..12
3 4 day 1..31
4 5 hour 0..23
5 6 minutes 0..59
6 7 seconds 0..60
(use 60 for leap-second)
7 8 deci-seconds 0..9
8 9 direction from UTC '+' / '-'
9 10 hours from UTC 0..11
10 11 minutes from UTC 0..59
For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be
displayed as:
1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then timezone
information (fields 8-10) is not present."
SYNTAX OCTET STRING (SIZE (8 | 11))
StorageType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Describes the memory realization of a conceptual row. A
row which is volatile(2) is lost upon reboot. A row which
is either nonVolatile(3), permanent(4) or readOnly(5), is
backed up by stable storage. A row which is permanent(4)
can be changed but not deleted. A row which is readOnly(5)
cannot be changed nor deleted.
If the value of an object with this syntax is either
permanent(4) or readOnly(5), it cannot be modified.
Conversely, if the value is either other(1), volatile(2) or
nonVolatile(3), it cannot be modified to be permanent(4) or
readOnly(5).
Every usage of this textual convention is required to
specify the columnar objects which a permanent(4) row must
at a minimum allow to be writable."
SYNTAX INTEGER {
other(1), -- eh?
volatile(2), -- e.g., in RAM
nonVolatile(3), -- e.g., in NVRAM
permanent(4), -- e.g., partially in ROM
readOnly(5) -- e.g., completely in ROM
}
TDomain ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Denotes a kind of transport service.
Some possible values, such as snmpUDPDomain, are defined in
'Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)'."
SYNTAX OBJECT IDENTIFIER
TAddress ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Denotes a transport service address.
For snmpUDPDomain, a TAddress is 6 octets long, the initial 4
octets containing the IP-address in network-byte order and the
last 2 containing the UDP port in network-byte order. Consult
'Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)' for further information on
snmpUDPDomain."
SYNTAX OCTET STRING (SIZE (1..255))
END

File diff suppressed because it is too large Load Diff