mirror of
				https://github.com/librenms/librenms.git
				synced 2024-10-07 16:52:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			958 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			958 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
<?php
 | 
						|
/**
 | 
						|
 * jpgraph_pie3d.php
 | 
						|
 *
 | 
						|
 * -Description-
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 * @package    LibreNMS
 | 
						|
 * @link       http://librenms.org
 | 
						|
 * @copyright  2016 Tony Murray
 | 
						|
 * @author     Tony Murray <murraytony@gmail.com>
 | 
						|
 */
 | 
						|
 | 
						|
/*=======================================================================
 | 
						|
 // File:        JPGRAPH_PIE3D.PHP
 | 
						|
 // Description: 3D Pie plot extension for JpGraph
 | 
						|
 // Created:     2001-03-24
 | 
						|
 // Ver:         $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $
 | 
						|
 //
 | 
						|
 // Copyright (c) Aditus Consulting. All rights reserved.
 | 
						|
 //========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
//===================================================
 | 
						|
// CLASS PiePlot3D
 | 
						|
// Description: Plots a 3D pie with a specified projection
 | 
						|
// angle between 20 and 70 degrees.
 | 
						|
//===================================================
 | 
						|
class PiePlot3D extends PiePlot {
 | 
						|
    private $labelhintcolor="red",$showlabelhint=true;
 | 
						|
    private $angle=50;
 | 
						|
    private $edgecolor="", $edgeweight=1;
 | 
						|
    private $iThickness=false;
 | 
						|
 | 
						|
    //---------------
 | 
						|
    // CONSTRUCTOR
 | 
						|
    function __construct($data) {
 | 
						|
        $this->radius = 0.5;
 | 
						|
        $this->data = $data;
 | 
						|
        $this->title = new Text("");
 | 
						|
        $this->title->SetFont(FF_FONT1,FS_BOLD);
 | 
						|
        $this->value = new DisplayValue();
 | 
						|
        $this->value->Show();
 | 
						|
        $this->value->SetFormat('%.0f%%');
 | 
						|
    }
 | 
						|
 | 
						|
    //---------------
 | 
						|
    // PUBLIC METHODS
 | 
						|
 | 
						|
    // Set label arrays
 | 
						|
    function SetLegends($aLegend) {
 | 
						|
        $this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
 | 
						|
    }
 | 
						|
 | 
						|
    function SetSliceColors($aColors) {
 | 
						|
        $this->setslicecolors = $aColors;
 | 
						|
    }
 | 
						|
 | 
						|
    function Legend($aGraph) {
 | 
						|
        parent::Legend($aGraph);
 | 
						|
        $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
 | 
						|
    }
 | 
						|
 | 
						|
    function SetCSIMTargets($aTargets,$aAlts='',$aWinTargets='') {
 | 
						|
        $this->csimtargets = $aTargets;
 | 
						|
        $this->csimwintargets = $aWinTargets;
 | 
						|
        $this->csimalts = $aAlts;
 | 
						|
    }
 | 
						|
 | 
						|
    // Should the slices be separated by a line? If color is specified as "" no line
 | 
						|
    // will be used to separate pie slices.
 | 
						|
    function SetEdge($aColor='black',$aWeight=1) {
 | 
						|
        $this->edgecolor = $aColor;
 | 
						|
        $this->edgeweight = $aWeight;
 | 
						|
    }
 | 
						|
 | 
						|
    // Specify projection angle for 3D in degrees
 | 
						|
    // Must be between 20 and 70 degrees
 | 
						|
    function SetAngle($a) {
 | 
						|
        if( $a<5 || $a>90 ) {
 | 
						|
            JpGraphError::RaiseL(14002);
 | 
						|
            //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $this->angle = $a;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) {  //Slice number, ellipse centre (x,y), height, width, start angle, end angle
 | 
						|
 | 
						|
        $sa *= M_PI/180;
 | 
						|
        $ea *= M_PI/180;
 | 
						|
 | 
						|
        //add coordinates of the centre to the map
 | 
						|
        $coords = "$xc, $yc";
 | 
						|
 | 
						|
        //add coordinates of the first point on the arc to the map
 | 
						|
        $xp = floor($width*cos($sa)/2+$xc);
 | 
						|
        $yp = floor($yc-$height*sin($sa)/2);
 | 
						|
        $coords.= ", $xp, $yp";
 | 
						|
 | 
						|
        //If on the front half, add the thickness offset
 | 
						|
        if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
 | 
						|
            $yp = floor($yp+$thick);
 | 
						|
            $coords.= ", $xp, $yp";
 | 
						|
        }
 | 
						|
 | 
						|
        //add coordinates every 0.2 radians
 | 
						|
        $a=$sa+0.2;
 | 
						|
        while ($a<$ea) {
 | 
						|
            $xp = floor($width*cos($a)/2+$xc);
 | 
						|
            if ($a >= M_PI && $a <= 2*M_PI*1.01) {
 | 
						|
                $yp = floor($yc-($height*sin($a)/2)+$thick);
 | 
						|
            } else {
 | 
						|
                $yp = floor($yc-$height*sin($a)/2);
 | 
						|
            }
 | 
						|
            $coords.= ", $xp, $yp";
 | 
						|
            $a += 0.2;
 | 
						|
        }
 | 
						|
 | 
						|
        //Add the last point on the arc
 | 
						|
        $xp = floor($width*cos($ea)/2+$xc);
 | 
						|
        $yp = floor($yc-$height*sin($ea)/2);
 | 
						|
 | 
						|
 | 
						|
        if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
 | 
						|
            $coords.= ", $xp, ".floor($yp+$thick);
 | 
						|
        }
 | 
						|
        $coords.= ", $xp, $yp";
 | 
						|
        $alt='';
 | 
						|
 | 
						|
        if( !empty($this->csimtargets[$i]) ) {
 | 
						|
            $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\"";
 | 
						|
 | 
						|
            if( !empty($this->csimwintargets[$i]) ) {
 | 
						|
                $this->csimareas .= " target=\"".$this->csimwintargets[$i]."\" ";
 | 
						|
            }
 | 
						|
             
 | 
						|
            if( !empty($this->csimalts[$i]) ) {
 | 
						|
                $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
 | 
						|
                $this->csimareas .= "alt=\"$tmp\" title=\"$tmp\" ";
 | 
						|
            }
 | 
						|
            $this->csimareas .=  " />\n";
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    function SetLabels($aLabels,$aLblPosAdj="auto") {
 | 
						|
        $this->labels = $aLabels;
 | 
						|
        $this->ilabelposadj=$aLblPosAdj;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Distance from the pie to the labels
 | 
						|
    function SetLabelMargin($m) {
 | 
						|
        $this->value->SetMargin($m);
 | 
						|
    }
 | 
						|
 | 
						|
    // Show a thin line from the pie to the label for a specific slice
 | 
						|
    function ShowLabelHint($f=true) {
 | 
						|
        $this->showlabelhint=$f;
 | 
						|
    }
 | 
						|
 | 
						|
    // Set color of hint line to label for each slice
 | 
						|
    function SetLabelHintColor($c) {
 | 
						|
        $this->labelhintcolor=$c;
 | 
						|
    }
 | 
						|
 | 
						|
    function SetHeight($aHeight) {
 | 
						|
        $this->iThickness = $aHeight;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Normalize Angle between 0-360
 | 
						|
    function NormAngle($a) {
 | 
						|
        // Normalize anle to 0 to 2M_PI
 | 
						|
        //
 | 
						|
        if( $a > 0 ) {
 | 
						|
            while($a > 360) $a -= 360;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            while($a < 0) $a += 360;
 | 
						|
        }
 | 
						|
        if( $a < 0 )
 | 
						|
        $a = 360 + $a;
 | 
						|
 | 
						|
        if( $a == 360 ) $a=0;
 | 
						|
        return $a;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    // Draw one 3D pie slice at position ($xc,$yc) with height $z
 | 
						|
    function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
 | 
						|
 | 
						|
        // Due to the way the 3D Pie algorithm works we are
 | 
						|
        // guaranteed that any slice we get into this method
 | 
						|
        // belongs to either the left or right side of the
 | 
						|
        // pie ellipse. Hence, no slice will cross 90 or 270
 | 
						|
        // point.
 | 
						|
        if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
 | 
						|
            JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
 | 
						|
        $p[] = array();
 | 
						|
 | 
						|
        // Setup pre-calculated values
 | 
						|
        $rsa = $sa/180*M_PI; // to Rad
 | 
						|
        $rea = $ea/180*M_PI; // to Rad
 | 
						|
        $sinsa = sin($rsa);
 | 
						|
        $cossa = cos($rsa);
 | 
						|
        $sinea = sin($rea);
 | 
						|
        $cosea = cos($rea);
 | 
						|
 | 
						|
        // p[] is the points for the overall slice and
 | 
						|
        // pt[] is the points for the top pie
 | 
						|
 | 
						|
        // Angular step when approximating the arc with a polygon train.
 | 
						|
        $step = 0.05;
 | 
						|
 | 
						|
        if( $sa >= 270 ) {
 | 
						|
            if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
 | 
						|
                if( $ea > 0 && $ea <= 90 ) {
 | 
						|
                    // Adjust angle to simplify conditions in loops
 | 
						|
                    $rea += 2*M_PI;
 | 
						|
                }
 | 
						|
 | 
						|
                $p = array($xc,$yc,$xc,$yc+$z,
 | 
						|
                $xc+$w*$cossa,$z+$yc-$h*$sinsa);
 | 
						|
                $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
 | 
						|
 | 
						|
                for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
 | 
						|
                    $tca = cos($a);
 | 
						|
                    $tsa = sin($a);
 | 
						|
                    $p[] = $xc+$w*$tca;
 | 
						|
                    $p[] = $z+$yc-$h*$tsa;
 | 
						|
                    $pt[] = $xc+$w*$tca;
 | 
						|
                    $pt[] = $yc-$h*$tsa;
 | 
						|
                }
 | 
						|
 | 
						|
                $pt[] = $xc+$w;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
                $p[] = $xc+$w;
 | 
						|
                $p[] = $z+$yc;
 | 
						|
                $p[] = $xc+$w;
 | 
						|
                $p[] = $yc;
 | 
						|
                $p[] = $xc;
 | 
						|
                $p[] = $yc;
 | 
						|
 | 
						|
                for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
 | 
						|
                    $pt[] = $xc + $w*cos($a);
 | 
						|
                    $pt[] = $yc - $h*sin($a);
 | 
						|
                }
 | 
						|
 | 
						|
                $pt[] = $xc+$w*$cosea;
 | 
						|
                $pt[] = $yc-$h*$sinea;
 | 
						|
                $pt[] = $xc;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                $p = array($xc,$yc,$xc,$yc+$z,
 | 
						|
                $xc+$w*$cossa,$z+$yc-$h*$sinsa);
 | 
						|
                $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
 | 
						|
 | 
						|
                $rea = $rea == 0.0 ? 2*M_PI : $rea;
 | 
						|
                for( $a=$rsa; $a < $rea; $a += $step ) {
 | 
						|
                    $tca = cos($a);
 | 
						|
                    $tsa = sin($a);
 | 
						|
                    $p[] = $xc+$w*$tca;
 | 
						|
                    $p[] = $z+$yc-$h*$tsa;
 | 
						|
                    $pt[] = $xc+$w*$tca;
 | 
						|
                    $pt[] = $yc-$h*$tsa;
 | 
						|
                }
 | 
						|
 | 
						|
                $pt[] = $xc+$w*$cosea;
 | 
						|
                $pt[] = $yc-$h*$sinea;
 | 
						|
                $pt[] = $xc;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
                $p[] = $xc+$w*$cosea;
 | 
						|
                $p[] = $z+$yc-$h*$sinea;
 | 
						|
                $p[] = $xc+$w*$cosea;
 | 
						|
                $p[] = $yc-$h*$sinea;
 | 
						|
                $p[] = $xc;
 | 
						|
                $p[] = $yc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        elseif( $sa >= 180 ) {
 | 
						|
            $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
 | 
						|
            $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
 | 
						|
 | 
						|
            for( $a=$rea; $a>$rsa; $a -= $step ) {
 | 
						|
                $tca = cos($a);
 | 
						|
                $tsa = sin($a);
 | 
						|
                $p[] = $xc+$w*$tca;
 | 
						|
                $p[] = $z+$yc-$h*$tsa;
 | 
						|
                $pt[] = $xc+$w*$tca;
 | 
						|
                $pt[] = $yc-$h*$tsa;
 | 
						|
            }
 | 
						|
 | 
						|
            $pt[] = $xc+$w*$cossa;
 | 
						|
            $pt[] = $yc-$h*$sinsa;
 | 
						|
            $pt[] = $xc;
 | 
						|
            $pt[] = $yc;
 | 
						|
 | 
						|
            $p[] = $xc+$w*$cossa;
 | 
						|
            $p[] = $z+$yc-$h*$sinsa;
 | 
						|
            $p[] = $xc+$w*$cossa;
 | 
						|
            $p[] = $yc-$h*$sinsa;
 | 
						|
            $p[] = $xc;
 | 
						|
            $p[] = $yc;
 | 
						|
 | 
						|
        }
 | 
						|
        elseif( $sa >= 90 ) {
 | 
						|
            if( $ea > 180 ) {
 | 
						|
                $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
 | 
						|
                $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
 | 
						|
 | 
						|
                for( $a=$rea; $a > M_PI; $a -= $step ) {
 | 
						|
                    $tca = cos($a);
 | 
						|
                    $tsa = sin($a);
 | 
						|
                    $p[] = $xc+$w*$tca;
 | 
						|
                    $p[] = $z + $yc - $h*$tsa;
 | 
						|
                    $pt[] = $xc+$w*$tca;
 | 
						|
                    $pt[] = $yc-$h*$tsa;
 | 
						|
                }
 | 
						|
 | 
						|
                $p[] = $xc-$w;
 | 
						|
                $p[] = $z+$yc;
 | 
						|
                $p[] = $xc-$w;
 | 
						|
                $p[] = $yc;
 | 
						|
                $p[] = $xc;
 | 
						|
                $p[] = $yc;
 | 
						|
 | 
						|
                $pt[] = $xc-$w;
 | 
						|
                $pt[] = $z+$yc;
 | 
						|
                $pt[] = $xc-$w;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
                for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
 | 
						|
                    $pt[] = $xc + $w*cos($a);
 | 
						|
                    $pt[] = $yc - $h*sin($a);
 | 
						|
                }
 | 
						|
 | 
						|
                $pt[] = $xc+$w*$cossa;
 | 
						|
                $pt[] = $yc-$h*$sinsa;
 | 
						|
                $pt[] = $xc;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
            }
 | 
						|
            else { // $sa >= 90 && $ea <= 180
 | 
						|
                $p = array($xc,$yc,$xc,$yc+$z,
 | 
						|
                $xc+$w*$cosea,$z+$yc-$h*$sinea,
 | 
						|
                $xc+$w*$cosea,$yc-$h*$sinea,
 | 
						|
                $xc,$yc);
 | 
						|
 | 
						|
                $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
 | 
						|
 | 
						|
                for( $a=$rea; $a>$rsa; $a -= $step ) {
 | 
						|
                    $pt[] = $xc + $w*cos($a);
 | 
						|
                    $pt[] = $yc - $h*sin($a);
 | 
						|
                }
 | 
						|
 | 
						|
                $pt[] = $xc+$w*$cossa;
 | 
						|
                $pt[] = $yc-$h*$sinsa;
 | 
						|
                $pt[] = $xc;
 | 
						|
                $pt[] = $yc;
 | 
						|
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else { // sa > 0 && ea < 90
 | 
						|
 | 
						|
            $p = array($xc,$yc,$xc,$yc+$z,
 | 
						|
            $xc+$w*$cossa,$z+$yc-$h*$sinsa,
 | 
						|
            $xc+$w*$cossa,$yc-$h*$sinsa,
 | 
						|
            $xc,$yc);
 | 
						|
 | 
						|
            $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
 | 
						|
 | 
						|
            for( $a=$rsa; $a < $rea; $a += $step ) {
 | 
						|
                $pt[] = $xc + $w*cos($a);
 | 
						|
                $pt[] = $yc - $h*sin($a);
 | 
						|
            }
 | 
						|
 | 
						|
            $pt[] = $xc+$w*$cosea;
 | 
						|
            $pt[] = $yc-$h*$sinea;
 | 
						|
            $pt[] = $xc;
 | 
						|
            $pt[] = $yc;
 | 
						|
        }
 | 
						|
         
 | 
						|
        $img->PushColor($fillcolor.":".$shadow);
 | 
						|
        $img->FilledPolygon($p);
 | 
						|
        $img->PopColor();
 | 
						|
 | 
						|
        $img->PushColor($fillcolor);
 | 
						|
        $img->FilledPolygon($pt);
 | 
						|
        $img->PopColor();
 | 
						|
    }
 | 
						|
 | 
						|
    function SetStartAngle($aStart) {
 | 
						|
        if( $aStart < 0 || $aStart > 360 ) {
 | 
						|
            JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
 | 
						|
        }
 | 
						|
        $this->startangle = $aStart;
 | 
						|
    }
 | 
						|
 | 
						|
    // Draw a 3D Pie
 | 
						|
    function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
 | 
						|
                   $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
 | 
						|
 | 
						|
        //---------------------------------------------------------------------------
 | 
						|
        // As usual the algorithm get more complicated than I originally
 | 
						|
        // envisioned. I believe that this is as simple as it is possible
 | 
						|
        // to do it with the features I want. It's a good exercise to start
 | 
						|
        // thinking on how to do this to convince your self that all this
 | 
						|
        // is really needed for the general case.
 | 
						|
        //
 | 
						|
        // The algorithm two draw 3D pies without "real 3D" is done in
 | 
						|
        // two steps.
 | 
						|
        // First imagine the pie cut in half through a thought line between
 | 
						|
        // 12'a clock and 6'a clock. It now easy to imagine that we can plot
 | 
						|
        // the individual slices for each half by starting with the topmost
 | 
						|
        // pie slice and continue down to 6'a clock.
 | 
						|
        //
 | 
						|
        // In the algortithm this is done in three principal steps
 | 
						|
        // Step 1. Do the knife cut to ensure by splitting slices that extends
 | 
						|
        // over the cut line. This is done by splitting the original slices into
 | 
						|
        // upto 3 subslices.
 | 
						|
        // Step 2. Find the top slice for each half
 | 
						|
        // Step 3. Draw the slices from top to bottom
 | 
						|
        //
 | 
						|
        // The thing that slightly complicates this scheme with all the
 | 
						|
        // angle comparisons below is that we can have an arbitrary start
 | 
						|
        // angle so we must take into account the different equivalence classes.
 | 
						|
        // For the same reason we must walk through the angle array in a
 | 
						|
        // modulo fashion.
 | 
						|
        //
 | 
						|
        // Limitations of algorithm:
 | 
						|
        // * A small exploded slice which crosses the 270 degree point
 | 
						|
        //   will get slightly nagged close to the center due to the fact that
 | 
						|
        //   we print the slices in Z-order and that the slice left part
 | 
						|
        //   get printed first and might get slightly nagged by a larger
 | 
						|
        //   slice on the right side just before the right part of the small
 | 
						|
        //   slice. Not a major problem though.
 | 
						|
        //---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
        // Determine the height of the ellippse which gives an
 | 
						|
        // indication of the inclination angle
 | 
						|
        $h = ($angle/90.0)*$d;
 | 
						|
        $sum = 0;
 | 
						|
        for($i=0; $i<count($data); ++$i ) {
 | 
						|
            $sum += $data[$i];
 | 
						|
        }
 | 
						|
 | 
						|
        // Special optimization
 | 
						|
        if( $sum==0 ) return;
 | 
						|
 | 
						|
        if( $this->labeltype == 2 ) {
 | 
						|
            $this->adjusted_data = $this->AdjPercentage($data);
 | 
						|
        }
 | 
						|
 | 
						|
        // Setup the start
 | 
						|
        $accsum = 0;
 | 
						|
        $a = $startangle;
 | 
						|
        $a = $this->NormAngle($a);
 | 
						|
 | 
						|
        //
 | 
						|
        // Step 1 . Split all slices that crosses 90 or 270
 | 
						|
        //
 | 
						|
        $idx=0;
 | 
						|
        $adjexplode=array();
 | 
						|
        $numcolors = count($colors);
 | 
						|
        for($i=0; $i<count($data); ++$i, ++$idx ) {
 | 
						|
            $da = $data[$i]/$sum * 360;
 | 
						|
 | 
						|
            if( empty($this->explode_radius[$i]) ) {
 | 
						|
                $this->explode_radius[$i]=0;
 | 
						|
            }
 | 
						|
 | 
						|
            $expscale=1;
 | 
						|
            if( $aaoption == 1 ) {
 | 
						|
                $expscale=2;
 | 
						|
            }
 | 
						|
 | 
						|
            $la = $a + $da/2;
 | 
						|
            $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
 | 
						|
            $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
 | 
						|
            $adjexplode[$idx] = $explode;
 | 
						|
            $labeldata[$i] = array($la,$explode[0],$explode[1]);
 | 
						|
            $originalangles[$i] = array($a,$a+$da);
 | 
						|
 | 
						|
            $ne = $this->NormAngle($a+$da);
 | 
						|
            if( $da <= 180 ) {
 | 
						|
                // If the slice size is <= 90 it can at maximum cut across
 | 
						|
                // one boundary (either 90 or 270) where it needs to be split
 | 
						|
                $split=-1; // no split
 | 
						|
                if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
 | 
						|
                (($da <= 180 && $da >90)  && (($a < 90 || $a >= 270) && $ne > 90)) ) {
 | 
						|
                    $split = 90;
 | 
						|
                }
 | 
						|
                elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
 | 
						|
                (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
 | 
						|
                    $split = 270;
 | 
						|
                }
 | 
						|
                if( $split > 0 ) { // split in two
 | 
						|
                    $angles[$idx] = array($a,$split);
 | 
						|
                    $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                    $angles[++$idx] = array($split,$ne);
 | 
						|
                    $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                }
 | 
						|
                else { // no split
 | 
						|
                    $angles[$idx] = array($a,$ne);
 | 
						|
                    $adjcolors[$idx] = $colors[$i  % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                // da>180
 | 
						|
                // Slice may, depending on position, cross one or two
 | 
						|
                // bonudaries
 | 
						|
 | 
						|
                if( $a < 90 )        $split = 90;
 | 
						|
                elseif( $a <= 270 )  $split = 270;
 | 
						|
                else                 $split = 90;
 | 
						|
 | 
						|
                $angles[$idx] = array($a,$split);
 | 
						|
                $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                $adjexplode[$idx] = $explode;
 | 
						|
                //if( $a+$da > 360-$split ) {
 | 
						|
                // For slices larger than 270 degrees we might cross
 | 
						|
                // another boundary as well. This means that we must
 | 
						|
                // split the slice further. The comparison gets a little
 | 
						|
                // bit complicated since we must take into accound that
 | 
						|
                // a pie might have a startangle >0 and hence a slice might
 | 
						|
                // wrap around the 0 angle.
 | 
						|
                // Three cases:
 | 
						|
                //  a) Slice starts before 90 and hence gets a split=90, but
 | 
						|
                //     we must also check if we need to split at 270
 | 
						|
                //  b) Slice starts after 90 but before 270 and slices
 | 
						|
                //     crosses 90 (after a wrap around of 0)
 | 
						|
                //  c) If start is > 270 (hence the firstr split is at 90)
 | 
						|
                //     and the slice is so large that it goes all the way
 | 
						|
                //     around 270.
 | 
						|
                if( ($a < 90 && ($a+$da > 270)) || ($a > 90 && $a<=270 && ($a+$da>360+90) ) || ($a > 270 && $this->NormAngle($a+$da)>270) ) {
 | 
						|
                    $angles[++$idx] = array($split,360-$split);
 | 
						|
                    $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                    $angles[++$idx] = array(360-$split,$ne);
 | 
						|
                    $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    // Just a simple split to the previous decided
 | 
						|
                    // angle.
 | 
						|
                    $angles[++$idx] = array($split,$ne);
 | 
						|
                    $adjcolors[$idx] = $colors[$i % $numcolors];
 | 
						|
                    $adjexplode[$idx] = $explode;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            $a += $da;
 | 
						|
            $a = $this->NormAngle($a);
 | 
						|
        }
 | 
						|
 | 
						|
        // Total number of slices
 | 
						|
        $n = count($angles);
 | 
						|
 | 
						|
        for($i=0; $i<$n; ++$i) {
 | 
						|
            list($dbgs,$dbge) = $angles[$i];
 | 
						|
        }
 | 
						|
 | 
						|
        //
 | 
						|
        // Step 2. Find start index (first pie that starts in upper left quadrant)
 | 
						|
        //
 | 
						|
        $minval = $angles[0][0];
 | 
						|
        $min = 0;
 | 
						|
        for( $i=0; $i<$n; ++$i ) {
 | 
						|
            if( $angles[$i][0] < $minval ) {
 | 
						|
                $minval = $angles[$i][0];
 | 
						|
                $min = $i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        $j = $min;
 | 
						|
        $cnt = 0;
 | 
						|
        while( $angles[$j][1] <= 90 ) {
 | 
						|
            $j++;
 | 
						|
            if( $j>=$n) {
 | 
						|
                $j=0;
 | 
						|
            }
 | 
						|
            if( $cnt > $n ) {
 | 
						|
                JpGraphError::RaiseL(14005);
 | 
						|
                //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
 | 
						|
            }
 | 
						|
            ++$cnt;
 | 
						|
        }
 | 
						|
        $start = $j;
 | 
						|
 | 
						|
        //
 | 
						|
        // Step 3. Print slices in z-order
 | 
						|
        //
 | 
						|
        $cnt = 0;
 | 
						|
 | 
						|
        // First stroke all the slices between 90 and 270 (left half circle)
 | 
						|
        // counterclockwise
 | 
						|
         
 | 
						|
        while( $angles[$j][0] < 270  && $aaoption !== 2 ) {
 | 
						|
 | 
						|
            list($x,$y) = $adjexplode[$j];
 | 
						|
 | 
						|
            $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
 | 
						|
            $z,$adjcolors[$j],$shadow);
 | 
						|
 | 
						|
            $last = array($x,$y,$j);
 | 
						|
 | 
						|
            $j++;
 | 
						|
            if( $j >= $n ) $j=0;
 | 
						|
            if( $cnt > $n ) {
 | 
						|
                JpGraphError::RaiseL(14006);
 | 
						|
                //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
 | 
						|
            }
 | 
						|
            ++$cnt;
 | 
						|
        }
 | 
						|
         
 | 
						|
        $slice_left = $n-$cnt;
 | 
						|
        $j=$start-1;
 | 
						|
        if($j<0) $j=$n-1;
 | 
						|
        $cnt = 0;
 | 
						|
 | 
						|
        // The stroke all slices from 90 to -90 (right half circle)
 | 
						|
        // clockwise
 | 
						|
        while( $cnt < $slice_left  && $aaoption !== 2 ) {
 | 
						|
 | 
						|
            list($x,$y) = $adjexplode[$j];
 | 
						|
 | 
						|
            $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
 | 
						|
            $z,$adjcolors[$j],$shadow);
 | 
						|
            $j--;
 | 
						|
            if( $cnt > $n ) {
 | 
						|
                JpGraphError::RaiseL(14006);
 | 
						|
                //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
 | 
						|
            }
 | 
						|
            if($j<0) $j=$n-1;
 | 
						|
            $cnt++;
 | 
						|
        }
 | 
						|
 | 
						|
        // Now do a special thing. Stroke the last slice on the left
 | 
						|
        // halfcircle one more time.  This is needed in the case where
 | 
						|
        // the slice close to 270 have been exploded. In that case the
 | 
						|
        // part of the slice close to the center of the pie might be
 | 
						|
        // slightly nagged.
 | 
						|
        if( $aaoption !== 2 )
 | 
						|
        $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
 | 
						|
        $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
 | 
						|
 | 
						|
 | 
						|
        if( $aaoption !== 1 ) {
 | 
						|
            // Now print possible labels and add csim
 | 
						|
            $this->value->ApplyFont($img);
 | 
						|
            $margin = $img->GetFontHeight()/2 + $this->value->margin ;
 | 
						|
            for($i=0; $i < count($data); ++$i ) {
 | 
						|
                $la = $labeldata[$i][0];
 | 
						|
                $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
 | 
						|
                $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
 | 
						|
                if( $this->ilabelposadj >= 1.0 ) {
 | 
						|
                    if( $la > 180 && $la < 360 ) $y += $z;
 | 
						|
                }
 | 
						|
                if( $this->labeltype == 0 ) {
 | 
						|
                    if( $sum > 0 ) $l = 100*$data[$i]/$sum;
 | 
						|
                    else $l = 0;
 | 
						|
                }
 | 
						|
                elseif( $this->labeltype == 1 ) {
 | 
						|
                    $l = $data[$i];
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    $l = $this->adjusted_data[$i];
 | 
						|
                }
 | 
						|
                if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) {
 | 
						|
                    $l=sprintf($this->labels[$i],$l);
 | 
						|
                }
 | 
						|
 | 
						|
                $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
 | 
						|
                 
 | 
						|
                $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
 | 
						|
                $originalangles[$i][0],$originalangles[$i][1]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        //
 | 
						|
        // Finally add potential lines in pie
 | 
						|
        //
 | 
						|
 | 
						|
        if( $edgecolor=="" || $aaoption !== 0 ) return;
 | 
						|
 | 
						|
        $accsum = 0;
 | 
						|
        $a = $startangle;
 | 
						|
        $a = $this->NormAngle($a);
 | 
						|
 | 
						|
        $a *= M_PI/180.0;
 | 
						|
 | 
						|
        $idx=0;
 | 
						|
        $img->PushColor($edgecolor);
 | 
						|
        $img->SetLineWeight($edgeweight);
 | 
						|
 | 
						|
        $fulledge = true;
 | 
						|
        for($i=0; $i < count($data) && $fulledge; ++$i ) {
 | 
						|
            if( empty($this->explode_radius[$i]) ) {
 | 
						|
                $this->explode_radius[$i]=0;
 | 
						|
            }
 | 
						|
            if( $this->explode_radius[$i] > 0 ) {
 | 
						|
                $fulledge = false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
         
 | 
						|
 | 
						|
        for($i=0; $i < count($data); ++$i, ++$idx ) {
 | 
						|
 | 
						|
            $da = $data[$i]/$sum * 2*M_PI;
 | 
						|
            $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
 | 
						|
            $this->explode_radius[$i],$fulledge);
 | 
						|
            $a += $da;
 | 
						|
        }
 | 
						|
        $img->PopColor();
 | 
						|
    }
 | 
						|
 | 
						|
    function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
 | 
						|
        $step = 0.02;
 | 
						|
 | 
						|
        if( $exploderadius > 0 ) {
 | 
						|
            $la = ($sa+$ea)/2;
 | 
						|
            $xc += $exploderadius*cos($la);
 | 
						|
            $yc -= $exploderadius*sin($la) * ($h/$w) ;
 | 
						|
             
 | 
						|
        }
 | 
						|
 | 
						|
        $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
 | 
						|
 | 
						|
        for($a=$sa; $a < $ea; $a += $step ) {
 | 
						|
            $p[] = $xc + $w*cos($a);
 | 
						|
            $p[] = $yc - $h*sin($a);
 | 
						|
        }
 | 
						|
 | 
						|
        $p[] = $xc+$w*cos($ea);
 | 
						|
        $p[] = $yc-$h*sin($ea);
 | 
						|
        $p[] = $xc;
 | 
						|
        $p[] = $yc;
 | 
						|
 | 
						|
        $img->SetColor($edgecolor);
 | 
						|
        $img->Polygon($p);
 | 
						|
 | 
						|
        // Unfortunately we can't really draw the full edge around the whole of
 | 
						|
        // of the slice if any of the slices are exploded. The reason is that
 | 
						|
        // this algorithm is to simply. There are cases where the edges will
 | 
						|
        // "overwrite" other slices when they have been exploded.
 | 
						|
        // Doing the full, proper 3D hidden lines stiff is actually quite
 | 
						|
        // tricky. So for exploded pies we only draw the top edge. Not perfect
 | 
						|
        // but the "real" solution is much more complicated.
 | 
						|
        if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
 | 
						|
 | 
						|
            if($sa < M_PI && $ea > M_PI) {
 | 
						|
                $sa = M_PI;
 | 
						|
            }
 | 
						|
 | 
						|
            if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) {
 | 
						|
                $ea = 2*M_PI;
 | 
						|
            }
 | 
						|
 | 
						|
            if( $sa >= M_PI && $ea <= 2*M_PI ) {
 | 
						|
                $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
 | 
						|
                $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
 | 
						|
 | 
						|
                for($a=$sa+$step; $a < $ea; $a += $step ) {
 | 
						|
                    $p[] = $xc + $w*cos($a);
 | 
						|
                    $p[] = $z + $yc - $h*sin($a);
 | 
						|
                }
 | 
						|
                $p[] = $xc + $w*cos($ea);
 | 
						|
                $p[] = $z + $yc - $h*sin($ea);
 | 
						|
                $p[] = $xc + $w*cos($ea);
 | 
						|
                $p[] = $yc - $h*sin($ea);
 | 
						|
                $img->SetColor($edgecolor);
 | 
						|
                $img->Polygon($p);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    function Stroke($img,$aaoption=0) {
 | 
						|
        $n = count($this->data);
 | 
						|
 | 
						|
        // If user hasn't set the colors use the theme array
 | 
						|
        if( $this->setslicecolors==null ) {
 | 
						|
            $colors = array_keys($img->rgb->rgb_table);
 | 
						|
            sort($colors);
 | 
						|
            $idx_a=$this->themearr[$this->theme];
 | 
						|
            $ca = array();
 | 
						|
            $m = count($idx_a);
 | 
						|
            for($i=0; $i < $m; ++$i) {
 | 
						|
                $ca[$i] = $colors[$idx_a[$i]];
 | 
						|
            }
 | 
						|
            $ca = array_reverse(array_slice($ca,0,$n));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $ca = $this->setslicecolors;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        if( $this->posx <= 1 && $this->posx > 0 ) {
 | 
						|
            $xc = round($this->posx*$img->width);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $xc = $this->posx ;
 | 
						|
        }
 | 
						|
 | 
						|
        if( $this->posy <= 1 && $this->posy > 0 ) {
 | 
						|
            $yc = round($this->posy*$img->height);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $yc = $this->posy ;
 | 
						|
        }
 | 
						|
 | 
						|
        if( $this->radius <= 1 ) {
 | 
						|
            $width = floor($this->radius*min($img->width,$img->height));
 | 
						|
            // Make sure that the pie doesn't overflow the image border
 | 
						|
            // The 0.9 factor is simply an extra margin to leave some space
 | 
						|
            // between the pie an the border of the image.
 | 
						|
            $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
 | 
						|
        }
 | 
						|
 | 
						|
        // Add a sanity check for width
 | 
						|
        if( $width < 1 ) {
 | 
						|
            JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
 | 
						|
        }
 | 
						|
 | 
						|
        // Establish a thickness. By default the thickness is a fifth of the
 | 
						|
        // pie slice width (=pie radius) but since the perspective depends
 | 
						|
        // on the inclination angle we use some heuristics to make the edge
 | 
						|
        // slightly thicker the less the angle.
 | 
						|
 | 
						|
        // Has user specified an absolute thickness? In that case use
 | 
						|
        // that instead
 | 
						|
 | 
						|
        if( $this->iThickness ) {
 | 
						|
            $thick = $this->iThickness;
 | 
						|
            $thick *= ($aaoption === 1 ? 2 : 1 );
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $thick = $width/12;
 | 
						|
        }
 | 
						|
        $a = $this->angle;
 | 
						|
        
 | 
						|
        if( $a <= 30 ) $thick *= 1.6;
 | 
						|
        elseif( $a <= 40 ) $thick *= 1.4;
 | 
						|
        elseif( $a <= 50 ) $thick *= 1.2;
 | 
						|
        elseif( $a <= 60 ) $thick *= 1.0;
 | 
						|
        elseif( $a <= 70 ) $thick *= 0.8;
 | 
						|
        elseif( $a <= 80 ) $thick *= 0.7;
 | 
						|
        else $thick *= 0.6;
 | 
						|
 | 
						|
        $thick = floor($thick);
 | 
						|
 | 
						|
        if( $this->explode_all ) {
 | 
						|
            for($i=0; $i < $n; ++$i)
 | 
						|
                $this->explode_radius[$i]=$this->explode_r;
 | 
						|
        }
 | 
						|
 | 
						|
        $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
 | 
						|
        $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
 | 
						|
 | 
						|
        // Adjust title position
 | 
						|
        if( $aaoption != 1 ) {
 | 
						|
            $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin,         "center","bottom");
 | 
						|
            $this->title->Stroke($img);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //---------------
 | 
						|
    // PRIVATE METHODS
 | 
						|
 | 
						|
    // Position the labels of each slice
 | 
						|
    function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
 | 
						|
        $this->value->halign="left";
 | 
						|
        $this->value->valign="top";
 | 
						|
 | 
						|
        // Position the axis title.
 | 
						|
        // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
 | 
						|
        // that intersects with the extension of the corresponding axis. The code looks a little
 | 
						|
        // bit messy but this is really the only way of having a reasonable position of the
 | 
						|
        // axis titles.
 | 
						|
        $this->value->ApplyFont($img);
 | 
						|
        $h=$img->GetTextHeight($label);
 | 
						|
        // For numeric values the format of the display value
 | 
						|
        // must be taken into account
 | 
						|
        if( is_numeric($label) ) {
 | 
						|
            if( $label >= 0 ) {
 | 
						|
                $w=$img->GetTextWidth(sprintf($this->value->format,$label));
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                $w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            $w=$img->GetTextWidth($label);
 | 
						|
        }
 | 
						|
        
 | 
						|
        while( $a > 2*M_PI ) {
 | 
						|
            $a -= 2*M_PI;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
 | 
						|
        if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
 | 
						|
        if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
 | 
						|
        if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
 | 
						|
 | 
						|
        if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
 | 
						|
        if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
 | 
						|
        if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
 | 
						|
        if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
 | 
						|
        if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
 | 
						|
 | 
						|
        $x = round($xp-$dx*$w);
 | 
						|
        $y = round($yp-$dy*$h);
 | 
						|
 | 
						|
        // Mark anchor point for debugging
 | 
						|
        /*
 | 
						|
        $img->SetColor('red');
 | 
						|
        $img->Line($xp-10,$yp,$xp+10,$yp);
 | 
						|
        $img->Line($xp,$yp-10,$xp,$yp+10);
 | 
						|
        */
 | 
						|
 | 
						|
        $oldmargin = $this->value->margin;
 | 
						|
        $this->value->margin=0;
 | 
						|
        $this->value->Stroke($img,$label,$x,$y);
 | 
						|
        $this->value->margin=$oldmargin;
 | 
						|
 | 
						|
    }
 | 
						|
} // Class
 | 
						|
 | 
						|
/* EOF */
 | 
						|
?>
 |