1
0
mirror of https://github.com/netbox-community/netbox.git synced 2024-05-10 07:54:54 +00:00
2017-06-09 16:24:59 -04:00

401 lines
15 KiB
Python

from __future__ import unicode_literals
import os
from Crypto.Cipher import AES, PKCS1_OAEP, XOR
from Crypto.PublicKey import RSA
from django.conf import settings
from django.contrib.auth.hashers import make_password, check_password
from django.contrib.auth.models import Group, User
from django.core.exceptions import ValidationError
from django.db import models
from django.urls import reverse
from django.utils.encoding import force_bytes, python_2_unicode_compatible
from dcim.models import Device
from utilities.models import CreatedUpdatedModel
from .exceptions import InvalidKey
from .hashers import SecretValidationHasher
def generate_random_key(bits=256):
"""
Generate a random encryption key. Sizes is given in bits and must be in increments of 32.
"""
if bits % 32:
raise Exception("Invalid key size ({}). Key sizes must be in increments of 32 bits.".format(bits))
return os.urandom(int(bits / 8))
def encrypt_master_key(master_key, public_key):
"""
Encrypt a secret key with the provided public RSA key.
"""
key = RSA.importKey(public_key)
cipher = PKCS1_OAEP.new(key)
return cipher.encrypt(master_key)
def decrypt_master_key(master_key_cipher, private_key):
"""
Decrypt a secret key with the provided private RSA key.
"""
key = RSA.importKey(private_key)
cipher = PKCS1_OAEP.new(key)
return cipher.decrypt(master_key_cipher)
def xor_keys(key_a, key_b):
"""
Return the binary XOR of two given keys.
"""
xor = XOR.new(key_a)
return xor.encrypt(key_b)
class UserKeyQuerySet(models.QuerySet):
def active(self):
return self.filter(master_key_cipher__isnull=False)
def delete(self):
# Disable bulk deletion to avoid accidentally wiping out all copies of the master key.
raise Exception("Bulk deletion has been disabled.")
@python_2_unicode_compatible
class UserKey(CreatedUpdatedModel):
"""
A UserKey stores a user's personal RSA (public) encryption key, which is used to generate their unique encrypted
copy of the master encryption key. The encrypted instance of the master key can be decrypted only with the user's
matching (private) decryption key.
"""
user = models.OneToOneField(User, related_name='user_key', editable=False, on_delete=models.CASCADE)
public_key = models.TextField(verbose_name='RSA public key')
master_key_cipher = models.BinaryField(max_length=512, blank=True, null=True, editable=False)
objects = UserKeyQuerySet.as_manager()
class Meta:
ordering = ['user__username']
permissions = (
('activate_userkey', "Can activate user keys for decryption"),
)
def __init__(self, *args, **kwargs):
super(UserKey, self).__init__(*args, **kwargs)
# Store the initial public_key and master_key_cipher to check for changes on save().
self.__initial_public_key = self.public_key
self.__initial_master_key_cipher = self.master_key_cipher
def __str__(self):
return self.user.username
def clean(self, *args, **kwargs):
if self.public_key:
# Validate the public key format
try:
pubkey = RSA.importKey(self.public_key)
except ValueError:
raise ValidationError({
'public_key': "Invalid RSA key format."
})
except:
raise ValidationError("Something went wrong while trying to save your key. Please ensure that you're "
"uploading a valid RSA public key in PEM format (no SSH/PGP).")
# Validate the public key length
pubkey_length = pubkey.size() + 1 # key.size() returns 1 less than the key modulus
if pubkey_length < settings.SECRETS_MIN_PUBKEY_SIZE:
raise ValidationError({
'public_key': "Insufficient key length. Keys must be at least {} bits long.".format(
settings.SECRETS_MIN_PUBKEY_SIZE
)
})
# We can't use keys bigger than our master_key_cipher field can hold
if pubkey_length > 4096:
raise ValidationError({
'public_key': "Public key size ({}) is too large. Maximum key size is 4096 bits.".format(
pubkey_length
)
})
super(UserKey, self).clean()
def save(self, *args, **kwargs):
# Check whether public_key has been modified. If so, nullify the initial master_key_cipher.
if self.__initial_master_key_cipher and self.public_key != self.__initial_public_key:
self.master_key_cipher = None
# If no other active UserKeys exist, generate a new master key and use it to activate this UserKey.
if self.is_filled() and not self.is_active() and not UserKey.objects.active().count():
master_key = generate_random_key()
self.master_key_cipher = encrypt_master_key(master_key, self.public_key)
super(UserKey, self).save(*args, **kwargs)
def delete(self, *args, **kwargs):
# If Secrets exist and this is the last active UserKey, prevent its deletion. Deleting the last UserKey will
# result in the master key being destroyed and rendering all Secrets inaccessible.
if Secret.objects.count() and [uk.pk for uk in UserKey.objects.active()] == [self.pk]:
raise Exception("Cannot delete the last active UserKey when Secrets exist! This would render all secrets "
"inaccessible.")
super(UserKey, self).delete(*args, **kwargs)
def is_filled(self):
"""
Returns True if the UserKey has been filled with a public RSA key.
"""
return bool(self.public_key)
is_filled.boolean = True
def is_active(self):
"""
Returns True if the UserKey has been populated with an encrypted copy of the master key.
"""
return self.master_key_cipher is not None
is_active.boolean = True
def get_master_key(self, private_key):
"""
Given the User's private key, return the encrypted master key.
"""
if not self.is_active:
raise ValueError("Unable to retrieve master key: UserKey is inactive.")
try:
return decrypt_master_key(force_bytes(self.master_key_cipher), private_key)
except ValueError:
return None
def activate(self, master_key):
"""
Activate the UserKey by saving an encrypted copy of the master key to the database.
"""
if not self.public_key:
raise Exception("Cannot activate UserKey: Its public key must be filled first.")
self.master_key_cipher = encrypt_master_key(master_key, self.public_key)
self.save()
@python_2_unicode_compatible
class SessionKey(models.Model):
"""
A SessionKey stores a User's temporary key to be used for the encryption and decryption of secrets.
"""
userkey = models.OneToOneField(UserKey, related_name='session_key', on_delete=models.CASCADE, editable=False)
cipher = models.BinaryField(max_length=512, editable=False)
hash = models.CharField(max_length=128, editable=False)
created = models.DateTimeField(auto_now_add=True)
key = None
class Meta:
ordering = ['userkey__user__username']
def __str__(self):
return self.userkey.user.username
def save(self, master_key=None, *args, **kwargs):
if master_key is None:
raise Exception("The master key must be provided to save a session key.")
# Generate a random 256-bit session key if one is not already defined
if self.key is None:
self.key = generate_random_key()
# Generate SHA256 hash using Django's built-in password hashing mechanism
self.hash = make_password(self.key)
# Encrypt master key using the session key
self.cipher = xor_keys(self.key, master_key)
super(SessionKey, self).save(*args, **kwargs)
def get_master_key(self, session_key):
# Validate the provided session key
if not check_password(session_key, self.hash):
raise InvalidKey("Invalid session key")
# Decrypt master key using provided session key
master_key = xor_keys(session_key, bytes(self.cipher))
return master_key
def get_session_key(self, master_key):
# Recover session key using the master key
session_key = xor_keys(master_key, bytes(self.cipher))
# Validate the recovered session key
if not check_password(session_key, self.hash):
raise InvalidKey("Invalid master key")
return session_key
@python_2_unicode_compatible
class SecretRole(models.Model):
"""
A SecretRole represents an arbitrary functional classification of Secrets. For example, a user might define roles
such as "Login Credentials" or "SNMP Communities."
By default, only superusers will have access to decrypt Secrets. To allow other users to decrypt Secrets, grant them
access to the appropriate SecretRoles either individually or by group.
"""
name = models.CharField(max_length=50, unique=True)
slug = models.SlugField(unique=True)
users = models.ManyToManyField(User, related_name='secretroles', blank=True)
groups = models.ManyToManyField(Group, related_name='secretroles', blank=True)
class Meta:
ordering = ['name']
def __str__(self):
return self.name
def get_absolute_url(self):
return "{}?role={}".format(reverse('secrets:secret_list'), self.slug)
def has_member(self, user):
"""
Check whether the given user has belongs to this SecretRole. Note that superusers belong to all roles.
"""
if user.is_superuser:
return True
return user in self.users.all() or user.groups.filter(pk__in=self.groups.all()).exists()
@python_2_unicode_compatible
class Secret(CreatedUpdatedModel):
"""
A Secret stores an AES256-encrypted copy of sensitive data, such as passwords or secret keys. An irreversible
SHA-256 hash is stored along with the ciphertext for validation upon decryption. Each Secret is assigned to a
Device; Devices may have multiple Secrets associated with them. A name can optionally be defined along with the
ciphertext; this string is stored as plain text in the database.
A Secret can be up to 65,536 bytes (64KB) in length. Each secret string will be padded with random data to a minimum
of 64 bytes during encryption in order to protect short strings from ciphertext analysis.
"""
device = models.ForeignKey(Device, related_name='secrets', on_delete=models.CASCADE)
role = models.ForeignKey('SecretRole', related_name='secrets', on_delete=models.PROTECT)
name = models.CharField(max_length=100, blank=True)
ciphertext = models.BinaryField(editable=False, max_length=65568) # 16B IV + 2B pad length + {62-65550}B padded
hash = models.CharField(max_length=128, editable=False)
plaintext = None
csv_headers = ['device', 'role', 'name', 'plaintext']
class Meta:
ordering = ['device', 'role', 'name']
unique_together = ['device', 'role', 'name']
def __init__(self, *args, **kwargs):
self.plaintext = kwargs.pop('plaintext', None)
super(Secret, self).__init__(*args, **kwargs)
def __str__(self):
if self.role and self.device:
return '{} for {}'.format(self.role, self.device)
return 'Secret'
def get_absolute_url(self):
return reverse('secrets:secret', args=[self.pk])
def _pad(self, s):
"""
Prepend the length of the plaintext (2B) and pad with garbage to a multiple of 16B (minimum of 64B).
+--+--------+-------------------------------------------+
|LL|MySecret|xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|
+--+--------+-------------------------------------------+
"""
if len(s) > 65535:
raise ValueError("Maximum plaintext size is 65535 bytes.")
# Minimum ciphertext size is 64 bytes to conceal the length of short secrets.
if len(s) <= 62:
pad_length = 62 - len(s)
elif (len(s) + 2) % 16:
pad_length = 16 - ((len(s) + 2) % 16)
else:
pad_length = 0
return (
chr(len(s) >> 8).encode() +
chr(len(s) % 256).encode() +
s.encode() +
os.urandom(pad_length)
)
def _unpad(self, s):
"""
Consume the first two bytes of s as a plaintext length indicator and return only that many bytes as the
plaintext.
"""
if isinstance(s[0], int):
plaintext_length = (s[0] << 8) + s[1]
elif isinstance(s[0], str):
plaintext_length = (ord(s[0]) << 8) + ord(s[1])
return s[2:plaintext_length + 2].decode()
def encrypt(self, secret_key):
"""
Generate a random initialization vector (IV) for AES. Pad the plaintext to the AES block size (16 bytes) and
encrypt. Prepend the IV for use in decryption. Finally, record the SHA256 hash of the plaintext for validation
upon decryption.
"""
if self.plaintext is None:
raise Exception("Must unlock or set plaintext before locking.")
# Pad and encrypt plaintext
iv = os.urandom(16)
aes = AES.new(secret_key, AES.MODE_CFB, iv)
self.ciphertext = iv + aes.encrypt(self._pad(self.plaintext))
# Generate SHA256 using Django's built-in password hashing mechanism
self.hash = make_password(self.plaintext, hasher=SecretValidationHasher())
self.plaintext = None
def decrypt(self, secret_key):
"""
Consume the first 16 bytes of self.ciphertext as the AES initialization vector (IV). The remainder is decrypted
using the IV and the provided secret key. Padding is then removed to reveal the plaintext. Finally, validate the
decrypted plaintext value against the stored hash.
"""
if self.plaintext is not None:
return
if not self.ciphertext:
raise Exception("Must define ciphertext before unlocking.")
# Decrypt ciphertext and remove padding
iv = bytes(self.ciphertext[0:16])
ciphertext = bytes(self.ciphertext[16:])
aes = AES.new(secret_key, AES.MODE_CFB, iv)
plaintext = self._unpad(aes.decrypt(ciphertext))
# Verify decrypted plaintext against hash
if not self.validate(plaintext):
raise ValueError("Invalid key or ciphertext!")
self.plaintext = plaintext
def validate(self, plaintext):
"""
Validate that a given plaintext matches the stored hash.
"""
if not self.hash:
raise Exception("Hash has not been generated for this secret.")
return check_password(plaintext, self.hash, preferred=SecretValidationHasher())
def decryptable_by(self, user):
"""
Check whether the given user has permission to decrypt this Secret.
"""
return self.role.has_member(user)