mirror of
https://github.com/stedolan/jq.git
synced 2024-05-11 05:55:39 +00:00
1036 lines
25 KiB
C
1036 lines
25 KiB
C
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "jv_alloc.h"
|
|
#include "jv.h"
|
|
|
|
/*
|
|
* Internal refcounting helpers
|
|
*/
|
|
|
|
static void jvp_refcnt_init(jv_complex* c) {
|
|
c->ptr->count = 1;
|
|
}
|
|
|
|
static void jvp_refcnt_inc(jv_complex* c) {
|
|
c->ptr->count++;
|
|
}
|
|
|
|
static int jvp_refcnt_dec(jv_complex* c) {
|
|
c->ptr->count--;
|
|
return c->ptr->count == 0;
|
|
}
|
|
|
|
static int jvp_refcnt_unshared(jv_complex* c) {
|
|
assert(c->ptr->count > 0);
|
|
return c->ptr->count == 1;
|
|
}
|
|
|
|
/*
|
|
* Simple values (true, false, null)
|
|
*/
|
|
|
|
jv_kind jv_get_kind(jv x) {
|
|
return x.kind;
|
|
}
|
|
|
|
const char* jv_kind_name(jv_kind k) {
|
|
switch (k) {
|
|
case JV_KIND_INVALID: return "<invalid>";
|
|
case JV_KIND_NULL: return "null";
|
|
case JV_KIND_FALSE: return "boolean";
|
|
case JV_KIND_TRUE: return "boolean";
|
|
case JV_KIND_NUMBER: return "number";
|
|
case JV_KIND_STRING: return "string";
|
|
case JV_KIND_ARRAY: return "array";
|
|
case JV_KIND_OBJECT: return "object";
|
|
}
|
|
assert(0 && "invalid kind");
|
|
return "<unknown>";
|
|
}
|
|
|
|
static const jv JV_NULL = {JV_KIND_NULL, {0}};
|
|
static const jv JV_FALSE = {JV_KIND_FALSE, {0}};
|
|
static const jv JV_TRUE = {JV_KIND_TRUE, {0}};
|
|
|
|
jv jv_true() {
|
|
return JV_TRUE;
|
|
}
|
|
|
|
jv jv_false() {
|
|
return JV_FALSE;
|
|
}
|
|
|
|
jv jv_null() {
|
|
return JV_NULL;
|
|
}
|
|
|
|
jv jv_bool(int x) {
|
|
return x ? JV_TRUE : JV_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Invalid objects, with optional error messages
|
|
*/
|
|
|
|
typedef struct {
|
|
jv_refcnt refcnt;
|
|
jv errmsg;
|
|
} jvp_invalid;
|
|
|
|
jv jv_invalid_with_msg(jv err) {
|
|
jv x;
|
|
x.kind = JV_KIND_INVALID;
|
|
x.val.complex.i[0] = x.val.complex.i[1] = 0;
|
|
jvp_invalid* i = jv_mem_alloc(sizeof(jvp_invalid));
|
|
x.val.complex.ptr = &i->refcnt;
|
|
i->refcnt.count = 1;
|
|
i->errmsg = err;
|
|
return x;
|
|
}
|
|
|
|
jv jv_invalid() {
|
|
return jv_invalid_with_msg(jv_null());
|
|
}
|
|
|
|
jv jv_invalid_get_msg(jv inv) {
|
|
jv x = jv_copy(((jvp_invalid*)inv.val.complex.ptr)->errmsg);
|
|
jv_free(inv);
|
|
return x;
|
|
}
|
|
|
|
int jv_invalid_has_msg(jv inv) {
|
|
jv msg = jv_invalid_get_msg(inv);
|
|
int r = jv_get_kind(msg) != JV_KIND_NULL;
|
|
jv_free(msg);
|
|
return r;
|
|
}
|
|
|
|
static void jvp_invalid_free(jv_complex* x) {
|
|
if (jvp_refcnt_dec(x)) {
|
|
jv_free(((jvp_invalid*)x->ptr)->errmsg);
|
|
jv_mem_free(x->ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Numbers
|
|
*/
|
|
|
|
jv jv_number(double x) {
|
|
jv j;
|
|
j.kind = JV_KIND_NUMBER;
|
|
j.val.number = x;
|
|
return j;
|
|
}
|
|
|
|
double jv_number_value(jv j) {
|
|
assert(jv_get_kind(j) == JV_KIND_NUMBER);
|
|
return j.val.number;
|
|
}
|
|
|
|
|
|
/*
|
|
* Arrays (internal helpers)
|
|
*/
|
|
|
|
#define ARRAY_SIZE_ROUND_UP(n) (((n)*3)/2)
|
|
|
|
static int imax(int a, int b) {
|
|
if (a>b) return a;
|
|
else return b;
|
|
}
|
|
|
|
//FIXME signed vs unsigned
|
|
typedef struct {
|
|
jv_refcnt refcnt;
|
|
int length, alloc_length;
|
|
jv elements[];
|
|
} jvp_array;
|
|
|
|
static jvp_array* jvp_array_ptr(jv_complex* a) {
|
|
return (jvp_array*)a->ptr;
|
|
}
|
|
|
|
static jvp_array* jvp_array_alloc(unsigned size) {
|
|
jvp_array* a = jv_mem_alloc(sizeof(jvp_array) + sizeof(jv) * size);
|
|
a->refcnt.count = 1;
|
|
a->length = 0;
|
|
a->alloc_length = size;
|
|
return a;
|
|
}
|
|
|
|
static jv_complex jvp_array_new(unsigned size) {
|
|
jv_complex r = {&jvp_array_alloc(size)->refcnt, {0, 0}};
|
|
return r;
|
|
}
|
|
|
|
static void jvp_array_free(jv_complex* a) {
|
|
if (jvp_refcnt_dec(a)) {
|
|
jvp_array* array = jvp_array_ptr(a);
|
|
for (int i=0; i<array->length; i++) {
|
|
jv_free(array->elements[i]);
|
|
}
|
|
jv_mem_free(array);
|
|
}
|
|
}
|
|
|
|
static int jvp_array_length(jv_complex* a) {
|
|
return a->i[1] - a->i[0];
|
|
}
|
|
|
|
static jv* jvp_array_read(jv_complex* a, int i) {
|
|
if (i >= 0 && i < jvp_array_length(a)) {
|
|
jvp_array* array = jvp_array_ptr(a);
|
|
assert(i + a->i[0] < array->length);
|
|
return &array->elements[i + a->i[0]];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static jv* jvp_array_write(jv_complex* a, int i) {
|
|
assert(i >= 0);
|
|
jvp_array* array = jvp_array_ptr(a);
|
|
|
|
int pos = i + a->i[0];
|
|
if (pos < array->alloc_length) {
|
|
// maybe we can update it in-place
|
|
// FIXME: this "optimisation" can cause circular references
|
|
#if 0
|
|
int can_write_past_end =
|
|
array->length <= pos && /* the end of this array has never been used */
|
|
a->i[1] == array->length; /* the current slice sees the end of the array */
|
|
#endif
|
|
int can_write_past_end = 0;
|
|
if (can_write_past_end || jvp_refcnt_unshared(a)) {
|
|
// extend the array
|
|
for (int j = array->length; j <= pos; j++) {
|
|
array->elements[j] = JV_NULL;
|
|
}
|
|
array->length = imax(pos + 1, array->length);
|
|
a->i[1] = imax(pos + 1, array->length);
|
|
return &array->elements[pos];
|
|
}
|
|
}
|
|
|
|
|
|
int new_length = imax(i + 1, jvp_array_length(a));
|
|
jvp_array* new_array = jvp_array_alloc(ARRAY_SIZE_ROUND_UP(new_length));
|
|
int j;
|
|
for (j = 0; j < jvp_array_length(a); j++) {
|
|
new_array->elements[j] = jv_copy(array->elements[j + a->i[0]]);
|
|
}
|
|
for (; j < new_length; j++) {
|
|
new_array->elements[j] = JV_NULL;
|
|
}
|
|
new_array->length = new_length;
|
|
jvp_array_free(a);
|
|
a->ptr = &new_array->refcnt;
|
|
a->i[0] = 0;
|
|
a->i[1] = new_length;
|
|
return &new_array->elements[i];
|
|
}
|
|
|
|
static int jvp_array_equal(jv_complex* a, jv_complex* b) {
|
|
if (jvp_array_length(a) != jvp_array_length(b))
|
|
return 0;
|
|
if (jvp_array_ptr(a) == jvp_array_ptr(b) &&
|
|
a->i[0] == b->i[0])
|
|
return 1;
|
|
for (int i=0; i<jvp_array_length(a); i++) {
|
|
if (!jv_equal(jv_copy(*jvp_array_read(a, i)),
|
|
jv_copy(*jvp_array_read(b,i))))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static jv_complex jvp_array_slice(jv_complex* a, int start, int end) {
|
|
// FIXME: maybe slice should reallocate if the slice is small enough
|
|
assert(start <= end);
|
|
assert(a->i[0] + end <= a->i[1]);
|
|
jv_complex slice = *a;
|
|
slice.i[0] += start;
|
|
slice.i[1] = slice.i[0] + (end - start);
|
|
return slice;
|
|
}
|
|
|
|
/*
|
|
* Arrays (public interface)
|
|
*/
|
|
|
|
jv jv_array_sized(int n) {
|
|
jv j;
|
|
j.kind = JV_KIND_ARRAY;
|
|
j.val.complex = jvp_array_new(n);
|
|
return j;
|
|
}
|
|
|
|
jv jv_array() {
|
|
return jv_array_sized(16);
|
|
}
|
|
|
|
int jv_array_length(jv j) {
|
|
assert(jv_get_kind(j) == JV_KIND_ARRAY);
|
|
int len = jvp_array_length(&j.val.complex);
|
|
jv_free(j);
|
|
return len;
|
|
}
|
|
|
|
jv jv_array_get(jv j, int idx) {
|
|
assert(jv_get_kind(j) == JV_KIND_ARRAY);
|
|
jv* slot = jvp_array_read(&j.val.complex, idx);
|
|
jv val;
|
|
if (slot) {
|
|
val = jv_copy(*slot);
|
|
} else {
|
|
val = jv_invalid();
|
|
}
|
|
jv_free(j);
|
|
return val;
|
|
}
|
|
|
|
jv jv_array_set(jv j, int idx, jv val) {
|
|
assert(jv_get_kind(j) == JV_KIND_ARRAY);
|
|
// copy/free of val,j coalesced
|
|
jv* slot = jvp_array_write(&j.val.complex, idx);
|
|
jv_free(*slot);
|
|
*slot = val;
|
|
return j;
|
|
}
|
|
|
|
jv jv_array_append(jv j, jv val) {
|
|
// copy/free of val,j coalesced
|
|
return jv_array_set(j, jv_array_length(jv_copy(j)), val);
|
|
}
|
|
|
|
jv jv_array_concat(jv a, jv b) {
|
|
assert(jv_get_kind(a) == JV_KIND_ARRAY);
|
|
assert(jv_get_kind(b) == JV_KIND_ARRAY);
|
|
|
|
// FIXME: could be much faster
|
|
jv_array_foreach(b, i, elem) {
|
|
a = jv_array_append(a, elem);
|
|
}
|
|
jv_free(b);
|
|
return a;
|
|
}
|
|
|
|
jv jv_array_slice(jv a, int start, int end) {
|
|
assert(jv_get_kind(a) == JV_KIND_ARRAY);
|
|
// copy/free of a coalesced
|
|
a.val.complex = jvp_array_slice(&a.val.complex, start, end);
|
|
return a;
|
|
}
|
|
|
|
int jv_array_contains(jv a, jv b) {
|
|
int r = 1;
|
|
jv_array_foreach(b, bi, belem) {
|
|
int ri = 0;
|
|
jv_array_foreach(a, ai, aelem) {
|
|
if (jv_contains(aelem, jv_copy(belem))) {
|
|
ri = 1;
|
|
break;
|
|
}
|
|
}
|
|
jv_free(belem);
|
|
if (!ri) {
|
|
r = 0;
|
|
break;
|
|
}
|
|
}
|
|
jv_free(a);
|
|
jv_free(b);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Strings (internal helpers)
|
|
*/
|
|
|
|
typedef struct {
|
|
jv_refcnt refcnt;
|
|
uint32_t hash;
|
|
// high 31 bits are length, low bit is a flag
|
|
// indicating whether hash has been computed.
|
|
uint32_t length_hashed;
|
|
uint32_t alloc_length;
|
|
char data[];
|
|
} jvp_string;
|
|
|
|
static jvp_string* jvp_string_ptr(jv_complex* a) {
|
|
return (jvp_string*)a->ptr;
|
|
}
|
|
|
|
static jvp_string* jvp_string_alloc(uint32_t size) {
|
|
jvp_string* s = jv_mem_alloc(sizeof(jvp_string) + size + 1);
|
|
s->refcnt.count = 1;
|
|
s->alloc_length = size;
|
|
return s;
|
|
}
|
|
|
|
static jv_complex jvp_string_new(const char* data, uint32_t length) {
|
|
jvp_string* s = jvp_string_alloc(length);
|
|
s->length_hashed = length << 1;
|
|
memcpy(s->data, data, length);
|
|
s->data[length] = 0;
|
|
jv_complex r = {&s->refcnt, {0,0}};
|
|
return r;
|
|
}
|
|
|
|
static void jvp_string_free(jv_complex* s) {
|
|
if (jvp_refcnt_dec(s)) {
|
|
jvp_string* str = jvp_string_ptr(s);
|
|
jv_mem_free(str);
|
|
}
|
|
}
|
|
|
|
static void jvp_string_free_p(jvp_string* s) {
|
|
jv_complex p = {&s->refcnt,{0,0}};
|
|
jvp_string_free(&p);
|
|
}
|
|
|
|
static jvp_string* jvp_string_copy_p(jvp_string* s) {
|
|
jv_complex p = {&s->refcnt,{0,0}};
|
|
jvp_refcnt_inc(&p);
|
|
return s;
|
|
}
|
|
|
|
static uint32_t jvp_string_length(jvp_string* s) {
|
|
return s->length_hashed >> 1;
|
|
}
|
|
|
|
static uint32_t jvp_string_remaining_space(jvp_string* s) {
|
|
assert(s->alloc_length >= jvp_string_length(s));
|
|
uint32_t r = s->alloc_length - jvp_string_length(s);
|
|
return r;
|
|
}
|
|
|
|
static void jvp_string_append(jv_complex* string, const char* data, uint32_t len) {
|
|
jvp_string* s = jvp_string_ptr(string);
|
|
uint32_t currlen = jvp_string_length(s);
|
|
|
|
if (jvp_refcnt_unshared(string) &&
|
|
jvp_string_remaining_space(s) >= len) {
|
|
// the next string fits at the end of a
|
|
memcpy(s->data + currlen, data, len);
|
|
s->data[currlen + len] = 0;
|
|
s->length_hashed = (currlen + len) << 1;
|
|
} else {
|
|
// allocate a bigger buffer and copy
|
|
uint32_t allocsz = (currlen + len) * 2;
|
|
if (allocsz < 32) allocsz = 32;
|
|
jvp_string* news = jvp_string_alloc(allocsz);
|
|
news->length_hashed = (currlen + len) << 1;
|
|
memcpy(news->data, s->data, currlen);
|
|
memcpy(news->data + currlen, data, len);
|
|
news->data[currlen + len] = 0;
|
|
jvp_string_free(string);
|
|
jv_complex r = {&news->refcnt, {0,0}};
|
|
*string = r;
|
|
}
|
|
}
|
|
|
|
static const uint32_t HASH_SEED = 0x432A9843;
|
|
|
|
static uint32_t rotl32 (uint32_t x, int8_t r){
|
|
return (x << r) | (x >> (32 - r));
|
|
}
|
|
|
|
static uint32_t jvp_string_hash(jvp_string* str) {
|
|
if (str->length_hashed & 1)
|
|
return str->hash;
|
|
|
|
/* The following is based on MurmurHash3.
|
|
MurmurHash3 was written by Austin Appleby, and is placed
|
|
in the public domain. */
|
|
|
|
const uint8_t* data = (const uint8_t*)str->data;
|
|
int len = (int)jvp_string_length(str);
|
|
const int nblocks = len / 4;
|
|
|
|
uint32_t h1 = HASH_SEED;
|
|
|
|
const uint32_t c1 = 0xcc9e2d51;
|
|
const uint32_t c2 = 0x1b873593;
|
|
const uint32_t* blocks = (const uint32_t *)(data + nblocks*4);
|
|
|
|
for(int i = -nblocks; i; i++) {
|
|
uint32_t k1 = blocks[i]; //FIXME: endianness/alignment
|
|
|
|
k1 *= c1;
|
|
k1 = rotl32(k1,15);
|
|
k1 *= c2;
|
|
|
|
h1 ^= k1;
|
|
h1 = rotl32(h1,13);
|
|
h1 = h1*5+0xe6546b64;
|
|
}
|
|
|
|
const uint8_t* tail = (const uint8_t*)(data + nblocks*4);
|
|
|
|
uint32_t k1 = 0;
|
|
|
|
switch(len & 3) {
|
|
case 3: k1 ^= tail[2] << 16;
|
|
case 2: k1 ^= tail[1] << 8;
|
|
case 1: k1 ^= tail[0];
|
|
k1 *= c1; k1 = rotl32(k1,15); k1 *= c2; h1 ^= k1;
|
|
}
|
|
|
|
h1 ^= len;
|
|
|
|
h1 ^= h1 >> 16;
|
|
h1 *= 0x85ebca6b;
|
|
h1 ^= h1 >> 13;
|
|
h1 *= 0xc2b2ae35;
|
|
h1 ^= h1 >> 16;
|
|
|
|
str->length_hashed |= 1;
|
|
str->hash = h1;
|
|
|
|
return h1;
|
|
}
|
|
|
|
static int jvp_string_equal_hashed(jvp_string* a, jvp_string* b) {
|
|
assert(a->length_hashed & 1);
|
|
assert(b->length_hashed & 1);
|
|
if (a == b) return 1;
|
|
if (a->hash != b->hash) return 0;
|
|
if (a->length_hashed != b->length_hashed) return 0;
|
|
return memcmp(a->data, b->data, jvp_string_length(a)) == 0;
|
|
}
|
|
|
|
static int jvp_string_equal(jv_complex* a, jv_complex* b) {
|
|
jvp_string* stra = jvp_string_ptr(a);
|
|
jvp_string* strb = jvp_string_ptr(b);
|
|
if (jvp_string_length(stra) != jvp_string_length(strb)) return 0;
|
|
return memcmp(stra->data, strb->data, jvp_string_length(stra)) == 0;
|
|
}
|
|
|
|
/*
|
|
* Strings (public API)
|
|
*/
|
|
|
|
jv jv_string_sized(const char* str, int len) {
|
|
jv j;
|
|
j.kind = JV_KIND_STRING;
|
|
j.val.complex = jvp_string_new(str, len);
|
|
return j;
|
|
}
|
|
|
|
jv jv_string(const char* str) {
|
|
return jv_string_sized(str, strlen(str));
|
|
}
|
|
|
|
int jv_string_length(jv j) {
|
|
assert(jv_get_kind(j) == JV_KIND_STRING);
|
|
int r = jvp_string_length(jvp_string_ptr(&j.val.complex));
|
|
jv_free(j);
|
|
return r;
|
|
}
|
|
|
|
uint32_t jv_string_hash(jv j) {
|
|
assert(jv_get_kind(j) == JV_KIND_STRING);
|
|
uint32_t hash = jvp_string_hash(jvp_string_ptr(&j.val.complex));
|
|
jv_free(j);
|
|
return hash;
|
|
}
|
|
|
|
const char* jv_string_value(jv j) {
|
|
assert(jv_get_kind(j) == JV_KIND_STRING);
|
|
return jvp_string_ptr(&j.val.complex)->data;
|
|
}
|
|
|
|
jv jv_string_concat(jv a, jv b) {
|
|
jvp_string* sb = jvp_string_ptr(&b.val.complex);
|
|
jvp_string_append(&a.val.complex, sb->data, jvp_string_length(sb));
|
|
jv_free(b);
|
|
return a;
|
|
}
|
|
|
|
jv jv_string_append_buf(jv a, const char* buf, int len) {
|
|
jvp_string_append(&a.val.complex, buf, len);
|
|
return a;
|
|
}
|
|
|
|
jv jv_string_append_str(jv a, const char* str) {
|
|
return jv_string_append_buf(a, str, strlen(str));
|
|
}
|
|
|
|
jv jv_string_fmt(const char* fmt, ...) {
|
|
int size = 1024;
|
|
while (1) {
|
|
char* buf = jv_mem_alloc(size);
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
int n = vsnprintf(buf, size, fmt, args);
|
|
va_end(args);
|
|
if (n < size) {
|
|
jv ret = jv_string_sized(buf, n);
|
|
jv_mem_free(buf);
|
|
return ret;
|
|
} else {
|
|
jv_mem_free(buf);
|
|
size = n * 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Objects (internal helpers)
|
|
*/
|
|
|
|
struct object_slot {
|
|
int next;
|
|
jvp_string* string;
|
|
uint32_t hash;
|
|
jv value;
|
|
};
|
|
|
|
typedef struct {
|
|
jv_refcnt refcnt;
|
|
int first_free;
|
|
struct object_slot elements[];
|
|
} jvp_object;
|
|
|
|
|
|
/* warning: complex justification of alignment */
|
|
static jv_complex jvp_object_new(int size) {
|
|
// Allocates an object of (size) slots and (size*2) hash buckets.
|
|
|
|
// size must be a power of two
|
|
assert(size > 0 && (size & (size - 1)) == 0);
|
|
jvp_object* obj = jv_mem_alloc(sizeof(jvp_object) +
|
|
sizeof(struct object_slot) * size +
|
|
sizeof(int) * (size * 2));
|
|
obj->refcnt.count = 1;
|
|
for (int i=0; i<size; i++) {
|
|
obj->elements[i].next = i - 1;
|
|
obj->elements[i].string = 0;
|
|
obj->elements[i].hash = 0;
|
|
obj->elements[i].value = JV_NULL;
|
|
}
|
|
obj->first_free = size - 1;
|
|
int* hashbuckets = (int*)(&obj->elements[size]);
|
|
jv_complex r = {&obj->refcnt,
|
|
{size*2 - 1, (char*)hashbuckets - (char*)obj}};
|
|
for (int i=0; i<size*2; i++) {
|
|
hashbuckets[i] = -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static jvp_object* jvp_object_ptr(jv_complex* o) {
|
|
return (jvp_object*)o->ptr;
|
|
}
|
|
|
|
static uint32_t jvp_object_mask(jv_complex* o) {
|
|
return o->i[0];
|
|
}
|
|
|
|
static int jvp_object_size(jv_complex* o) {
|
|
return (o->i[0] + 1) >> 1;
|
|
}
|
|
|
|
static int* jvp_object_buckets(jv_complex* o) {
|
|
int* buckets = (int*)((char*)o->ptr + o->i[1]);
|
|
assert(buckets == (int*)&jvp_object_ptr(o)->elements[jvp_object_size(o)]);
|
|
return buckets;
|
|
}
|
|
|
|
static int* jvp_object_find_bucket(jv_complex* object, jvp_string* key) {
|
|
return jvp_object_buckets(object) + (jvp_object_mask(object) & jvp_string_hash(key));
|
|
}
|
|
|
|
static struct object_slot* jvp_object_get_slot(jv_complex* object, int slot) {
|
|
assert(slot == -1 || (slot >= 0 && slot < jvp_object_size(object)));
|
|
if (slot == -1) return 0;
|
|
else return &jvp_object_ptr(object)->elements[slot];
|
|
}
|
|
|
|
static struct object_slot* jvp_object_next_slot(jv_complex* object, struct object_slot* slot) {
|
|
return jvp_object_get_slot(object, slot->next);
|
|
}
|
|
|
|
static struct object_slot* jvp_object_find_slot(jv_complex* object, jvp_string* keystr, int* bucket) {
|
|
for (struct object_slot* curr = jvp_object_get_slot(object, *bucket);
|
|
curr;
|
|
curr = jvp_object_next_slot(object, curr)) {
|
|
if (jvp_string_equal_hashed(keystr, curr->string)) {
|
|
return curr;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct object_slot* jvp_object_add_slot(jv_complex* object, jvp_string* key, int* bucket) {
|
|
jvp_object* o = jvp_object_ptr(object);
|
|
int newslot_idx = o->first_free;
|
|
struct object_slot* newslot = jvp_object_get_slot(object, newslot_idx);
|
|
if (newslot == 0) return 0;
|
|
o->first_free = newslot->next;
|
|
newslot->next = *bucket;
|
|
*bucket = newslot_idx;
|
|
newslot->hash = jvp_string_hash(key);
|
|
newslot->string = key;
|
|
return newslot;
|
|
}
|
|
|
|
static void jvp_object_free_slot(jv_complex* object, struct object_slot* slot) {
|
|
jvp_object* o = jvp_object_ptr(object);
|
|
slot->next = o->first_free;
|
|
assert(slot->string);
|
|
jvp_string_free_p(slot->string);
|
|
slot->string = 0;
|
|
jv_free(slot->value);
|
|
o->first_free = slot - jvp_object_get_slot(object, 0);
|
|
}
|
|
|
|
static jv* jvp_object_read(jv_complex* object, jvp_string* key) {
|
|
int* bucket = jvp_object_find_bucket(object, key);
|
|
struct object_slot* slot = jvp_object_find_slot(object, key, bucket);
|
|
if (slot == 0) return 0;
|
|
else return &slot->value;
|
|
}
|
|
|
|
static void jvp_object_free(jv_complex* o) {
|
|
if (jvp_refcnt_dec(o)) {
|
|
for (int i=0; i<jvp_object_size(o); i++) {
|
|
struct object_slot* slot = jvp_object_get_slot(o, i);
|
|
if (slot->string) {
|
|
jvp_string_free_p(slot->string);
|
|
jv_free(slot->value);
|
|
}
|
|
}
|
|
jv_mem_free(jvp_object_ptr(o));
|
|
}
|
|
}
|
|
|
|
static void jvp_object_rehash(jv_complex* object) {
|
|
assert(jvp_refcnt_unshared(object));
|
|
int size = jvp_object_size(object);
|
|
jv_complex new_object = jvp_object_new(size * 2);
|
|
for (int i=0; i<size; i++) {
|
|
struct object_slot* slot = jvp_object_get_slot(object, i);
|
|
if (!slot->string) continue;
|
|
|
|
int* new_bucket = jvp_object_find_bucket(&new_object, slot->string);
|
|
assert(!jvp_object_find_slot(&new_object, slot->string, new_bucket));
|
|
struct object_slot* new_slot = jvp_object_add_slot(&new_object, slot->string, new_bucket);
|
|
assert(new_slot);
|
|
new_slot->value = slot->value;
|
|
}
|
|
// references are transported, just drop the old table
|
|
jv_mem_free(jvp_object_ptr(object));
|
|
*object = new_object;
|
|
}
|
|
|
|
static void jvp_object_unshare(jv_complex* object) {
|
|
if (jvp_refcnt_unshared(object))
|
|
return;
|
|
|
|
jv_complex new_object = jvp_object_new(jvp_object_size(object));
|
|
jvp_object_ptr(&new_object)->first_free = jvp_object_ptr(object)->first_free;
|
|
for (int i=0; i<jvp_object_size(&new_object); i++) {
|
|
struct object_slot* old_slot = jvp_object_get_slot(object, i);
|
|
struct object_slot* new_slot = jvp_object_get_slot(&new_object, i);
|
|
*new_slot = *old_slot;
|
|
if (old_slot->string) {
|
|
new_slot->string = jvp_string_copy_p(old_slot->string);
|
|
new_slot->value = jv_copy(old_slot->value);
|
|
}
|
|
}
|
|
|
|
int* old_buckets = jvp_object_buckets(object);
|
|
int* new_buckets = jvp_object_buckets(&new_object);
|
|
memcpy(new_buckets, old_buckets, sizeof(int) * jvp_object_size(&new_object)*2);
|
|
|
|
jvp_object_free(object);
|
|
*object = new_object;
|
|
assert(jvp_refcnt_unshared(object));
|
|
}
|
|
|
|
static jv* jvp_object_write(jv_complex* object, jvp_string* key) {
|
|
jvp_object_unshare(object);
|
|
int* bucket = jvp_object_find_bucket(object, key);
|
|
struct object_slot* slot = jvp_object_find_slot(object, key, bucket);
|
|
if (slot) {
|
|
// already has the key
|
|
jvp_string_free_p(key);
|
|
return &slot->value;
|
|
}
|
|
slot = jvp_object_add_slot(object, key, bucket);
|
|
if (slot) {
|
|
slot->value = jv_invalid();
|
|
} else {
|
|
jvp_object_rehash(object);
|
|
bucket = jvp_object_find_bucket(object, key);
|
|
assert(!jvp_object_find_slot(object, key, bucket));
|
|
slot = jvp_object_add_slot(object, key, bucket);
|
|
assert(slot);
|
|
slot->value = jv_invalid();
|
|
}
|
|
return &slot->value;
|
|
}
|
|
|
|
static int jvp_object_delete(jv_complex* object, jvp_string* key) {
|
|
jvp_object_unshare(object);
|
|
int* bucket = jvp_object_find_bucket(object, key);
|
|
int* prev_ptr = bucket;
|
|
for (struct object_slot* curr = jvp_object_get_slot(object, *bucket);
|
|
curr;
|
|
curr = jvp_object_next_slot(object, curr)) {
|
|
if (jvp_string_equal_hashed(key, curr->string)) {
|
|
*prev_ptr = curr->next;
|
|
jvp_object_free_slot(object, curr);
|
|
return 1;
|
|
}
|
|
prev_ptr = &curr->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int jvp_object_length(jv_complex* object) {
|
|
int n = 0;
|
|
for (int i=0; i<jvp_object_size(object); i++) {
|
|
struct object_slot* slot = jvp_object_get_slot(object, i);
|
|
if (slot->string) n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int jvp_object_equal(jv_complex* o1, jv_complex* o2) {
|
|
int len2 = jvp_object_length(o2);
|
|
int len1 = 0;
|
|
for (int i=0; i<jvp_object_size(o1); i++) {
|
|
struct object_slot* slot = jvp_object_get_slot(o1, i);
|
|
if (!slot->string) continue;
|
|
jv* slot2 = jvp_object_read(o2, slot->string);
|
|
if (!slot2) return 0;
|
|
// FIXME: do less refcounting here
|
|
if (!jv_equal(jv_copy(slot->value), jv_copy(*slot2))) return 0;
|
|
len1++;
|
|
}
|
|
return len1 == len2;
|
|
}
|
|
|
|
/*
|
|
* Objects (public interface)
|
|
*/
|
|
#define DEFAULT_OBJECT_SIZE 8
|
|
jv jv_object() {
|
|
jv j;
|
|
j.kind = JV_KIND_OBJECT;
|
|
j.val.complex = jvp_object_new(8);
|
|
return j;
|
|
}
|
|
|
|
jv jv_object_get(jv object, jv key) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
assert(jv_get_kind(key) == JV_KIND_STRING);
|
|
jv* slot = jvp_object_read(&object.val.complex, jvp_string_ptr(&key.val.complex));
|
|
jv val;
|
|
if (slot) {
|
|
val = jv_copy(*slot);
|
|
} else {
|
|
val = jv_invalid();
|
|
}
|
|
jv_free(object);
|
|
jv_free(key);
|
|
return val;
|
|
}
|
|
|
|
jv jv_object_set(jv object, jv key, jv value) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
assert(jv_get_kind(key) == JV_KIND_STRING);
|
|
// copy/free of object, key, value coalesced
|
|
jv* slot = jvp_object_write(&object.val.complex, jvp_string_ptr(&key.val.complex));
|
|
jv_free(*slot);
|
|
*slot = value;
|
|
return object;
|
|
}
|
|
|
|
jv jv_object_delete(jv object, jv key) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
assert(jv_get_kind(key) == JV_KIND_STRING);
|
|
jvp_object_delete(&object.val.complex, jvp_string_ptr(&key.val.complex));
|
|
jv_free(key);
|
|
return object;
|
|
}
|
|
|
|
int jv_object_length(jv object) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
int n = jvp_object_length(&object.val.complex);
|
|
jv_free(object);
|
|
return n;
|
|
}
|
|
|
|
jv jv_object_merge(jv a, jv b) {
|
|
assert(jv_get_kind(a) == JV_KIND_OBJECT);
|
|
jv_object_foreach(b, k, v) {
|
|
a = jv_object_set(a, k, v);
|
|
}
|
|
jv_free(b);
|
|
return a;
|
|
}
|
|
|
|
int jv_object_contains(jv a, jv b) {
|
|
assert(jv_get_kind(a) == JV_KIND_OBJECT);
|
|
assert(jv_get_kind(b) == JV_KIND_OBJECT);
|
|
int r = 1;
|
|
|
|
jv_object_foreach(b, key, b_val) {
|
|
jv a_val = jv_object_get(jv_copy(a), jv_copy(key));
|
|
|
|
r = jv_contains(a_val, b_val);
|
|
jv_free(key);
|
|
|
|
if (!r) break;
|
|
}
|
|
|
|
jv_free(a);
|
|
jv_free(b);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Object iteration (internal helpers)
|
|
*/
|
|
|
|
enum { ITER_FINISHED = -2 };
|
|
|
|
int jv_object_iter_valid(jv object, int i) {
|
|
return i != ITER_FINISHED;
|
|
}
|
|
|
|
int jv_object_iter(jv object) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
return jv_object_iter_next(object, -1);
|
|
}
|
|
|
|
int jv_object_iter_next(jv object, int iter) {
|
|
assert(jv_get_kind(object) == JV_KIND_OBJECT);
|
|
assert(iter != ITER_FINISHED);
|
|
jv_complex* o = &object.val.complex;
|
|
struct object_slot* slot;
|
|
do {
|
|
iter++;
|
|
if (iter >= jvp_object_size(o))
|
|
return ITER_FINISHED;
|
|
slot = jvp_object_get_slot(o, iter);
|
|
} while (!slot->string);
|
|
return iter;
|
|
}
|
|
|
|
jv jv_object_iter_key(jv object, int iter) {
|
|
jvp_string* s = jvp_object_get_slot(&object.val.complex, iter)->string;
|
|
assert(s);
|
|
jv j;
|
|
j.kind = JV_KIND_STRING;
|
|
j.val.complex.ptr = &s->refcnt;
|
|
j.val.complex.i[0] = 0;
|
|
j.val.complex.i[1] = 0;
|
|
return jv_copy(j);
|
|
}
|
|
|
|
jv jv_object_iter_value(jv object, int iter) {
|
|
return jv_copy(jvp_object_get_slot(&object.val.complex, iter)->value);
|
|
}
|
|
|
|
/*
|
|
* Memory management
|
|
*/
|
|
jv jv_copy(jv j) {
|
|
if (jv_get_kind(j) == JV_KIND_ARRAY ||
|
|
jv_get_kind(j) == JV_KIND_STRING ||
|
|
jv_get_kind(j) == JV_KIND_OBJECT ||
|
|
jv_get_kind(j) == JV_KIND_INVALID) {
|
|
jvp_refcnt_inc(&j.val.complex);
|
|
}
|
|
return j;
|
|
}
|
|
|
|
void jv_free(jv j) {
|
|
if (jv_get_kind(j) == JV_KIND_ARRAY) {
|
|
jvp_array_free(&j.val.complex);
|
|
} else if (jv_get_kind(j) == JV_KIND_STRING) {
|
|
jvp_string_free(&j.val.complex);
|
|
} else if (jv_get_kind(j) == JV_KIND_OBJECT) {
|
|
jvp_object_free(&j.val.complex);
|
|
} else if (jv_get_kind(j) == JV_KIND_INVALID) {
|
|
jvp_invalid_free(&j.val.complex);
|
|
}
|
|
}
|
|
|
|
int jv_get_refcnt(jv j) {
|
|
switch (jv_get_kind(j)) {
|
|
case JV_KIND_ARRAY:
|
|
case JV_KIND_STRING:
|
|
case JV_KIND_OBJECT:
|
|
return j.val.complex.ptr->count;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Higher-level operations
|
|
*/
|
|
|
|
int jv_equal(jv a, jv b) {
|
|
int r;
|
|
if (jv_get_kind(a) != jv_get_kind(b)) {
|
|
r = 0;
|
|
} else if (jv_get_kind(a) == JV_KIND_NUMBER) {
|
|
r = jv_number_value(a) == jv_number_value(b);
|
|
} else if (a.val.complex.ptr == b.val.complex.ptr &&
|
|
a.val.complex.i[0] == b.val.complex.i[0] &&
|
|
a.val.complex.i[1] == b.val.complex.i[1]) {
|
|
r = 1;
|
|
} else {
|
|
switch (jv_get_kind(a)) {
|
|
case JV_KIND_ARRAY:
|
|
r = jvp_array_equal(&a.val.complex, &b.val.complex);
|
|
break;
|
|
case JV_KIND_STRING:
|
|
r = jvp_string_equal(&a.val.complex, &b.val.complex);
|
|
break;
|
|
case JV_KIND_OBJECT:
|
|
r = jvp_object_equal(&a.val.complex, &b.val.complex);
|
|
break;
|
|
default:
|
|
r = 1;
|
|
break;
|
|
}
|
|
}
|
|
jv_free(a);
|
|
jv_free(b);
|
|
return r;
|
|
}
|
|
|
|
int jv_contains(jv a, jv b) {
|
|
int r = 1;
|
|
if (jv_get_kind(a) != jv_get_kind(b)) {
|
|
r = 0;
|
|
} else if (jv_get_kind(a) == JV_KIND_OBJECT) {
|
|
r = jv_object_contains(jv_copy(a), jv_copy(b));
|
|
} else if (jv_get_kind(a) == JV_KIND_ARRAY) {
|
|
r = jv_array_contains(jv_copy(a), jv_copy(b));
|
|
} else if (jv_get_kind(a) == JV_KIND_STRING) {
|
|
r = strstr(jv_string_value(a), jv_string_value(b)) != 0;
|
|
} else {
|
|
r = jv_equal(jv_copy(a), jv_copy(b));
|
|
}
|
|
jv_free(a);
|
|
jv_free(b);
|
|
return r;
|
|
}
|