Files
xdp-project-bpf-examples/traffic-pacing-edt/edt_pacer02.c

215 lines
5.8 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <bpf/compiler.h>
#include "iproute2_compat.h"
#define VLAN_MAX_DEPTH 2
#include <xdp/parsing_helpers.h>
char _license[] SEC("license") = "GPL";
#define NS_PER_SEC 1000000000
//#define RATE_IN_BITS (1000 * 1000 * 1000ULL)
//#define RATE_IN_BITS (998 * 1000 * 1000ULL)
/* Test different rates in production machine, and measure iperf3 TCP-goodput */
//#define RATE_IN_BITS (800 * 1000 * 1000ULL)// prod: 765 Mbits/sec (stable)
//#define RATE_IN_BITS (900 * 1000 * 1000ULL)// prod: 861 Mbits/sec (stable)
//#define RATE_IN_BITS (950 * 1000 * 1000ULL)// prod: 908 Mbits/sec (stable)
//#define RATE_IN_BITS (960 * 1000 * 1000ULL)// prod: 918 Mbits/sec
#define RATE_IN_BITS (970 * 1000 * 1000ULL)// prod: 928 Mbits/sec
//#define RATE_IN_BITS (980 * 1000 * 1000ULL)// prod: 920 Mbits/sec (unstable)
//#define RATE_IN_BITS (990 * 1000 * 1000ULL)// prod: 920 Mbits/sec (unstable)
//#define RATE_IN_BITS (999 * 1000 * 1000ULL)// prod: (unstable)
/* skb->len in bytes, thus easier to keep rate in bytes */
#define RATE_IN_BYTES (RATE_IN_BITS / 8)
//#define T_HORIZON_DROP (2000 * 1000 * 1000ULL)
//#define T_HORIZON_DROP (200000 * 1000 * 1000ULL)
#define T_HORIZON_DROP (15 * 1000 * 1000ULL)
#define T_HORIZON_ECN (5 * 1000 * 1000ULL)
struct edt_val {
__u64 rate;
__u64 t_last;
__u64 t_horizon_drop;
__u64 t_horizon_ecn;
} __aligned(64); /* Align struct to cache-size to avoid false-sharing */
/* The tc tool (iproute2) use another ELF map layout than libbpf (struct
* bpf_map_def), see struct bpf_elf_map from iproute2.
*/
struct bpf_elf_map SEC("maps") time_delay_map = {
.type = BPF_MAP_TYPE_ARRAY,
.size_key = sizeof(__u32),
.size_value = sizeof(struct edt_val),
.max_elem = 1,
//.pinning = PIN_GLOBAL_NS,
};
/* Role of EDT (Earliest Departure Time) is to schedule departure of packets to
* be send in the future.
*/
static __always_inline int sched_departure(struct __sk_buff *skb)
{
struct edt_val *edt;
__u64 t_queue_sz;
__u64 t_xmit_ns;
__u64 t_next;
__u64 t_curr;
int key = 0;
__u64 now;
edt = bpf_map_lookup_elem(&time_delay_map, &key);
if (!edt)
return BPF_DROP;
/* Calc transmission time it takes to send packet 'bytes'.
*
* Details on getting precise bytes on wire. The skb->len does include
* length of GRO/GSO segments, but not the segment headers that gets
* added on transmit. Fortunately skb->wire_len at TC-egress hook (not
* ingress) include these headers. (See: qdisc_pkt_len_init())
*/
t_xmit_ns = ((__u64)skb->wire_len) * NS_PER_SEC / RATE_IN_BYTES;
// t_xmit_ns = ((__u64)skb->wire_len) * NS_PER_SEC / edt->rate;
now = bpf_ktime_get_ns();
/* Allow others to set skb tstamp prior to us */
t_curr = skb->tstamp;
if (t_curr < now)
t_curr = now;
/* The 't_last' timestamp can be in the future. Packets scheduled a head
* of his packet can be seen as the queue size measured in time, via
* correlating this to 'now' timestamp.
*/
t_next = READ_ONCE(edt->t_last) + t_xmit_ns;
/* If packet doesn't get scheduled into the future, then there is
* no-queue and we are not above rate limit. Send packet immediately and
* move forward t_last timestamp to now.
*/
if (t_next <= t_curr) {
WRITE_ONCE(edt->t_last, t_curr);
return BPF_OK;
}
/* Calc queue size measured in time */
t_queue_sz = t_next - now;
/* FQ-pacing qdisc also have horizon, but cannot use that, because this
* BPF-prog will have updated map (t_last) on packet and assumes it got
* its part of bandwidth.
*/
if (t_queue_sz >= T_HORIZON_DROP /* edt->t_horizon_drop */)
return BPF_DROP;
/* ECN marking horizon */
if (t_queue_sz >= T_HORIZON_ECN)
bpf_skb_ecn_set_ce(skb);
/* Advance "time queue" */
WRITE_ONCE(edt->t_last, t_next);
/* Schedule packet to be send at future timestamp */
skb->tstamp = t_next;
return BPF_OK;
}
static __always_inline
__u16 get_inner_qinq_vlan(struct __sk_buff *skb, struct collect_vlans *vlans)
{
__u16 vlan_key;
/* NIC can HW "offload" the outer VLAN, moving it to skb context */
if (skb->vlan_present)
vlan_key = vlans->id[0]; /* Inner vlan placed as first inline */
else
vlan_key = vlans->id[1]; /* All VLAN headers inline */
return vlan_key;
}
static __always_inline
__u16 get_vlan(struct __sk_buff *skb, struct collect_vlans *vlans)
{
__u16 vlan_key;
/* Handle extracting VLAN if skb context have VLAN offloaded */
if (skb->vlan_present)
vlan_key = skb->vlan_tci & VLAN_VID_MASK;
else
vlan_key = vlans->id[0];
return vlan_key;
}
static __always_inline
__u16 extract_vlan_key(struct __sk_buff *skb, struct collect_vlans *vlans)
{
int QinQ = 0;
/* The inner VLAN is the key to extract. But it is complicated
* due to NIC "offloaded" VLAN (skb->vlan_present). In case
* BPF-prog is loaded on outer VLAN net_device, the BPF-prog
* sees the inner-VLAN at the first and only VLAN.
*/
if (skb->vlan_present) {
if (vlans->id[0])
QinQ = 1;
} else {
if (vlans->id[1])
QinQ = 1;
}
if (QinQ)
return get_inner_qinq_vlan(skb, vlans);
else
return get_vlan(skb, vlans);
}
SEC("classifier") int tc_edt_vlan(struct __sk_buff *skb)
{
void *data = (void *)(long)skb->data;
void *data_end = (void *)(long)skb->data_end;
struct collect_vlans vlans = { 0 };
struct ethhdr *eth;
int ret = BPF_OK;
__u16 vlan_key;
/* These keep track of the next header type and iterator pointer */
struct hdr_cursor nh;
int eth_type;
nh.pos = data;
eth_type = parse_ethhdr_vlan(&nh, data_end, &eth, &vlans);
if (eth_type < 0)
return BPF_DROP;
/* Keep ARP resolution working */
if (eth_type == bpf_htons(ETH_P_ARP)) {
ret = BPF_OK;
goto out;
}
if (!proto_is_vlan(eth->h_proto) && !skb->vlan_present) {
/* Skip non-VLAN frames */
return BPF_OK;
}
vlan_key = extract_vlan_key(skb, &vlans);
/* For-now: Match on vlan16 and only apply EDT on that */
if (vlan_key == 16)
return sched_departure(skb);
out:
return ret;
}