Files
xdp-project-bpf-examples/pping/pping_kern.c

362 lines
11 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <stdbool.h>
// overwrite xdp/parsing_helpers.h value to avoid hitting verifier limit
#ifdef IPV6_EXT_MAX_CHAIN
#undef IPV6_EXT_MAX_CHAIN
#endif
#define IPV6_EXT_MAX_CHAIN 3
#include <xdp/parsing_helpers.h>
#include "pping.h"
#define AF_INET 2
#define AF_INET6 10
#define MAX_TCP_OPTIONS 10
/*
* This struct keeps track of the data and data_end pointers from the xdp_md or
* __skb_buff contexts, as well as a currently parsed to position kept in nh.
* Additionally, it also keeps the length of the entire packet, which together
* with the other members can be used to determine ex. how much data each
* header encloses.
*/
struct parsing_context {
void *data; //Start of eth hdr
void *data_end; //End of safe acessible area
struct hdr_cursor nh; //Position to parse next
__u32 pkt_len; //Full packet length (headers+data)
bool is_egress; //Is packet on egress or ingress?
};
char _license[] SEC("license") = "GPL";
// Global config struct - set from userspace
static volatile const struct bpf_config config = {};
// Map definitions
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, struct packet_id);
__type(value, __u64);
__uint(max_entries, 16384);
} packet_ts SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, struct network_tuple);
__type(value, struct flow_state);
__uint(max_entries, 16384);
} flow_state SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u32));
} rtt_events SEC(".maps");
// Help functions
/*
* Maps an IPv4 address into an IPv6 address according to RFC 4291 sec 2.5.5.2
*/
static void map_ipv4_to_ipv6(__be32 ipv4, struct in6_addr *ipv6)
{
__builtin_memset(&ipv6->in6_u.u6_addr8[0], 0x00, 10);
__builtin_memset(&ipv6->in6_u.u6_addr8[10], 0xff, 2);
ipv6->in6_u.u6_addr32[3] = ipv4;
}
/*
* Parses the TSval and TSecr values from the TCP options field. If sucessful
* the TSval and TSecr values will be stored at tsval and tsecr (in network
* byte order).
* Returns 0 if sucessful and -1 on failure
*/
static int parse_tcp_ts(struct tcphdr *tcph, void *data_end, __u32 *tsval,
__u32 *tsecr)
{
int len = tcph->doff << 2;
void *opt_end = (void *)tcph + len;
__u8 *pos = (__u8 *)(tcph + 1); //Current pos in TCP options
__u8 i, opt;
volatile __u8
opt_size; // Seems to ensure it's always read of from stack as u8
if (tcph + 1 > data_end || len <= sizeof(struct tcphdr))
return -1;
#pragma unroll //temporary solution until we can identify why the non-unrolled loop gets stuck in an infinite loop
for (i = 0; i < MAX_TCP_OPTIONS; i++) {
if (pos + 1 > opt_end || pos + 1 > data_end)
return -1;
opt = *pos;
if (opt == 0) // Reached end of TCP options
return -1;
if (opt == 1) { // TCP NOP option - advance one byte
pos++;
continue;
}
// Option > 1, should have option size
if (pos + 2 > opt_end || pos + 2 > data_end)
return -1;
opt_size = *(pos + 1);
if (opt_size < 2) // Stop parsing options if opt_size has an invalid value
return -1;
// Option-kind is TCP timestap (yey!)
if (opt == 8 && opt_size == 10) {
if (pos + 10 > opt_end || pos + 10 > data_end)
return -1;
*tsval = *(__u32 *)(pos + 2);
*tsecr = *(__u32 *)(pos + 6);
return 0;
}
// Some other TCP option - advance option-length bytes
pos += opt_size;
}
return -1;
}
/*
* Attempts to fetch an identifier for TCP packets, based on the TCP timestamp
* option. If sucessful, identifier will be set to TSval if is_ingress, TSecr
* otherwise, the port-members of saddr and daddr will be set the the TCP source
* and dest, respectively, and 0 will be returned. On failure, -1 will be
* returned. Additionally, if the connection is closing (FIN or RST flag), sets
* flow_closing to true.
*/
static int parse_tcp_identifier(struct parsing_context *ctx, __be16 *sport,
__be16 *dport, bool *flow_closing,
__u32 *identifier)
{
__u32 tsval, tsecr;
struct tcphdr *tcph;
if (parse_tcphdr(&ctx->nh, ctx->data_end, &tcph) < 0)
return -1;
// Check if connection is closing
if (tcph->fin || tcph->rst) {
*flow_closing = true;
/* bpf_printk("Detected connection closing on %d\n", */
/* ctx->is_egress); //Upsets verifier? */
}
// Do not timestamp pure ACKs
if (ctx->is_egress && ctx->nh.pos - ctx->data >= ctx->pkt_len &&
!tcph->syn)
return -1;
if (parse_tcp_ts(tcph, ctx->data_end, &tsval, &tsecr) < 0)
return -1; //Possible TODO, fall back on seq/ack instead
*sport = tcph->source;
*dport = tcph->dest;
*identifier = ctx->is_egress ? tsval : tsecr;
return 0;
}
/*
* Attempts to parse the packet limited by the data and data_end pointers,
* to retrieve a protocol dependent packet identifier. If sucessful, the
* pointed to p_id will be filled with parsed information from the packet
* packet, and 0 will be returned. On failure, -1 will be returned.
* If is_egress saddr and daddr will match source and destination of packet,
* respectively, and identifier will be set to the identifer for an outgoing
* packet. Otherwise, saddr and daddr will be swapped (will match
* destination and source of packet, respectively), and identifier will be
* set to the identifier of a response.
*/
static int parse_packet_identifier(struct parsing_context *ctx,
struct packet_id *p_id, bool *flow_closing)
{
int proto, err;
struct ethhdr *eth;
struct iphdr *iph;
struct ipv6hdr *ip6h;
struct flow_address *saddr, *daddr;
// Switch saddr <--> daddr on ingress to match egress
if (ctx->is_egress) {
saddr = &p_id->flow.saddr;
daddr = &p_id->flow.daddr;
} else {
saddr = &p_id->flow.daddr;
daddr = &p_id->flow.saddr;
}
proto = parse_ethhdr(&ctx->nh, ctx->data_end, &eth);
// Parse IPv4/6 header
if (proto == bpf_htons(ETH_P_IP)) {
p_id->flow.ipv = AF_INET;
proto = parse_iphdr(&ctx->nh, ctx->data_end, &iph);
} else if (proto == bpf_htons(ETH_P_IPV6)) {
p_id->flow.ipv = AF_INET6;
proto = parse_ip6hdr(&ctx->nh, ctx->data_end, &ip6h);
} else {
return -1;
}
// Add new protocols here
if (proto == IPPROTO_TCP) {
err = parse_tcp_identifier(ctx, &saddr->port, &daddr->port,
flow_closing, &p_id->identifier);
if (err)
return -1;
} else {
return -1;
}
// Sucessfully parsed packet identifier - fill in IP-addresses and return
if (p_id->flow.ipv == AF_INET) {
map_ipv4_to_ipv6(iph->saddr, &saddr->ip);
map_ipv4_to_ipv6(iph->daddr, &daddr->ip);
} else { // IPv6
saddr->ip = ip6h->saddr;
daddr->ip = ip6h->daddr;
}
return 0;
}
// Programs
// TC-BFP for parsing packet identifier from egress traffic and add to map
SEC(EGRESS_PROG_SEC)
int pping_egress(struct __sk_buff *skb)
{
struct packet_id p_id = { 0 };
__u64 p_ts;
struct parsing_context pctx = {
.data = (void *)(long)skb->data,
.data_end = (void *)(long)skb->data_end,
.pkt_len = skb->len,
.nh = { .pos = pctx.data },
.is_egress = true,
};
bool flow_closing = false;
struct flow_state *f_state;
struct flow_state new_state = { 0 };
if (parse_packet_identifier(&pctx, &p_id, &flow_closing) < 0)
goto out;
// Delete flow and create no timestamp entry if flow is closing
if (flow_closing) {
bpf_map_delete_elem(&flow_state, &p_id.flow);
goto out;
}
// Check flow state
f_state = bpf_map_lookup_elem(&flow_state, &p_id.flow);
if (!f_state) { // No previous state - attempt to create it
bpf_map_update_elem(&flow_state, &p_id.flow, &new_state,
BPF_NOEXIST);
f_state = bpf_map_lookup_elem(&flow_state, &p_id.flow);
if (!f_state)
goto out;
}
// Check if identfier is new
/* The gap between checking and updating last_id may cause concurrency
* issues where multiple packets may simultaneously think they are the
* first with a new identifier. As long as all of the identifiers are
* the same though, only one should be able to create a timestamp entry.
* A bigger issue is that older identifiers (for example due to
* out-of-order packets) may pass this check and update the current
* identifier to an old one. This means that both the packet with the
* old identifier itself as well the next packet with the current
* identifier may be considered packets with new identifiers (even if
* both have been seen before). For TCP timestamps this could be
* prevented by changing the check to '>=' instead, but it may not be
* suitable for other protocols, such as QUIC and its spinbit.
*
* For now, just hope that the rate limit saves us from creating an
* incorrect timestamp. That may however also fail, either due to the
* to it happening in a time it's not limited by rate sampling, or
* because of rate check failing due to concurrency issues.
*/
if (f_state->last_id == p_id.identifier)
goto out;
f_state->last_id = p_id.identifier;
// Check rate-limit
/*
* The window between checking and updating last_timestamp may cause
* concurrency issues, where multiple packets simultaneously pass the
* rate limit. However, as long as they have the same identifier, only
* a single timestamp entry should successfully be created.
*/
p_ts = bpf_ktime_get_ns(); // or bpf_ktime_get_boot_ns
if (p_ts < f_state->last_timestamp ||
p_ts - f_state->last_timestamp < config.rate_limit)
goto out;
/*
* Updates attempt at creating timestamp, even if creation of timestamp
* fails (due to map being full). This should make the competition for
* the next available map slot somewhat fairer between heavy and sparse
* flows.
*/
f_state->last_timestamp = p_ts;
bpf_map_update_elem(&packet_ts, &p_id, &p_ts, BPF_NOEXIST);
out:
return BPF_OK;
}
// XDP program for parsing identifier in ingress traffic and check for match in map
SEC(INGRESS_PROG_SEC)
int pping_ingress(struct xdp_md *ctx)
{
struct packet_id p_id = { 0 };
__u64 *p_ts;
struct rtt_event event = { 0 };
struct parsing_context pctx = {
.data = (void *)(long)ctx->data,
.data_end = (void *)(long)ctx->data_end,
.pkt_len = pctx.data_end - pctx.data,
.nh = { .pos = pctx.data },
.is_egress = false,
};
bool flow_closing = false;
if (parse_packet_identifier(&pctx, &p_id, &flow_closing) < 0)
goto out;
// Delete flow, but allow final attempt at RTT calculation
if (flow_closing)
bpf_map_delete_elem(&flow_state, &p_id.flow);
p_ts = bpf_map_lookup_elem(&packet_ts, &p_id);
if (!p_ts)
goto out;
event.rtt = bpf_ktime_get_ns() - *p_ts;
/*
* Attempt to delete timestamp entry as soon as RTT is calculated.
* But could have potential concurrency issue where multiple packets
* manage to match against the identifier before it can be deleted.
*/
bpf_map_delete_elem(&packet_ts, &p_id);
__builtin_memcpy(&event.flow, &p_id.flow, sizeof(struct network_tuple));
bpf_perf_event_output(ctx, &rtt_events, BPF_F_CURRENT_CPU, &event,
sizeof(event));
out:
return XDP_PASS;
}