/* SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* provided by libbpf */ #include "common_params.h" #include "common_user_bpf_xdp.h" // #include "common_libbpf.h" #include "af_xdp_kern_shared.h" #include "lib_xsk_extend.h" #include "ethtool_utils.h" #define NUM_FRAMES 4096 /* Frames per queue */ #define FRAME_SIZE XSK_UMEM__DEFAULT_FRAME_SIZE /* 4096 */ #define RX_BATCH_SIZE 64 #define INVALID_UMEM_FRAME UINT64_MAX struct mem_frame_allocator { uint32_t umem_frame_free; uint32_t umem_frame_max; uint64_t *umem_frame_addr; /* array */ }; struct xsk_umem_info { struct xsk_ring_prod init_fq; struct xsk_ring_cons init_cq; struct xsk_umem *umem; void *buffer; struct mem_frame_allocator mem; }; struct stats_record { uint64_t timestamp; uint64_t rx_packets; uint64_t rx_bytes; uint64_t tx_packets; uint64_t tx_bytes; }; struct xsk_socket_info { struct xsk_ring_cons rx; struct xsk_ring_prod tx; struct xsk_umem_info *umem; struct xsk_socket *xsk; struct xsk_ring_prod fq; struct xsk_ring_cons cq; uint32_t outstanding_tx; int queue_id; struct stats_record stats; struct stats_record prev_stats; }; struct xsk_container { struct xsk_socket_info *sockets[MAX_AF_SOCKS]; int num; /* Number of xsk_sockets configured */ }; /** * BTF setup XDP-hints * ------------------- * Setup the data structures for accessing the XDP-hints provided by * kernel side BPF-prog via decoding BTF-info provided in BPF * ELF-object file. */ /* This struct BTF mirrors kernel-side struct xdp_hints_rx_time */ struct xdp_hints_rx_time { __u32 btf_type_id; /* cached xsk_btf__btf_type_id(xbi) */ struct xsk_btf_info *xbi; struct xsk_btf_member rx_ktime; } xdp_hints_rx_time = { 0 }; /* This struct BTF mirrors kernel-side struct xdp_hints_mark */ struct xdp_hints_mark { __u32 btf_type_id; /* cached xsk_btf__btf_type_id(xbi) */ struct xsk_btf_info *xbi; struct xsk_btf_member mark; } xdp_hints_mark = { 0 }; struct xsk_btf_info *setup_btf_info(struct btf *btf, const char *struct_name) { struct xsk_btf_info *xbi = NULL; int err; err = xsk_btf__init_xdp_hint(btf, struct_name, &xbi); if (err) { fprintf(stderr, "WARN(%d): Cannot BTF find struct:%s\n", err, struct_name); return NULL; } if (!xsk_btf__has_field("btf_id", xbi)) { fprintf(stderr, "ERR: %s doesn't contain member btf_id\n", struct_name); xsk_btf__free_xdp_hint(xbi); return NULL; } if (debug_meta) printf("Setup BTF based XDP hints for struct: %s\n", struct_name); return xbi; } int init_btf_info_via_bpf_object(struct bpf_object *bpf_obj) { struct btf *btf = bpf_object__btf(bpf_obj); struct xsk_btf_info *xbi; xbi = setup_btf_info(btf, "xdp_hints_rx_time"); if (xbi) { /* Lookup info on required member "rx_ktime" */ if (!xsk_btf__field_member("rx_ktime", xbi, &xdp_hints_rx_time.rx_ktime)) return -EBADSLT; xdp_hints_rx_time.btf_type_id = xsk_btf__btf_type_id(xbi); xdp_hints_rx_time.xbi = xbi; } xbi = setup_btf_info(btf, "xdp_hints_mark"); if (xbi) { if (!xsk_btf__field_member("mark", xbi, &xdp_hints_mark.mark)) return -EBADSLT; xdp_hints_mark.btf_type_id = xsk_btf__btf_type_id(xbi); xdp_hints_mark.xbi = xbi; } return 0; } #define NANOSEC_PER_SEC 1000000000 /* 10^9 */ static uint64_t gettime(void) { struct timespec t; int res; res = clock_gettime(CLOCK_MONOTONIC, &t); if (res < 0) { fprintf(stderr, "Error with gettimeofday! (%i)\n", res); exit(EXIT_FAIL); } return (uint64_t) t.tv_sec * NANOSEC_PER_SEC + t.tv_nsec; } static inline __u32 xsk_ring_prod__free(struct xsk_ring_prod *r) { r->cached_cons = *r->consumer + r->size; return r->cached_cons - r->cached_prod; } static const char *__doc__ = "AF_XDP kernel bypass example\n"; static const struct option_wrapper long_options[] = { {{"help", no_argument, NULL, 'h' }, "Show help", false}, {{"dev", required_argument, NULL, 'd' }, "Operate on device ", "", true}, {{"skb-mode", no_argument, NULL, 'S' }, "Install XDP program in SKB (AKA generic) mode"}, {{"native-mode", no_argument, NULL, 'N' }, "Install XDP program in native mode"}, {{"auto-mode", no_argument, NULL, 'A' }, "Auto-detect SKB or native mode"}, {{"force", no_argument, NULL, 'F' }, "Force install, replacing existing program on interface"}, {{"copy", no_argument, NULL, 'c' }, "Force copy mode"}, {{"zero-copy", no_argument, NULL, 'z' }, "Force zero-copy mode"}, {{"queue", required_argument, NULL, 'Q' }, "Configure single interface receive queue for AF_XDP"}, {{"wakeup-mode", no_argument, NULL, 'w' }, "Use poll() API waiting for packets to arrive via wakeup from kernel"}, {{"spin-mode", no_argument, NULL, 's' }, "Let userspace process spin checking for packets (disable --wakeup-mode)"}, {{"unload", no_argument, NULL, 'U' }, "Unload XDP program instead of loading"}, {{"quiet", no_argument, NULL, 'q' }, "Quiet mode (no output)"}, {{"pktinfo", no_argument, NULL, 'P' }, "Print packet info output mode (debug)"}, {{"metainfo", no_argument, NULL, 'm' }, "Print XDP metadata info output mode (debug)"}, {{"debug", no_argument, NULL, 'D' }, "Debug info output mode (debug)"}, {{"filename", required_argument, NULL, 1 }, "Load program from ", ""}, {{"progsec", required_argument, NULL, 2 }, "Load program in
of the ELF file", "
"}, {{0, 0, NULL, 0 }, NULL, false} }; static bool global_exit; /** * Simple memory allocator for umem frames */ static uint64_t mem_alloc_umem_frame(struct mem_frame_allocator *mem) { uint64_t frame; if (mem->umem_frame_free == 0) return INVALID_UMEM_FRAME; frame = mem->umem_frame_addr[--mem->umem_frame_free]; mem->umem_frame_addr[mem->umem_frame_free] = INVALID_UMEM_FRAME; return frame; } static void mem_free_umem_frame(struct mem_frame_allocator *mem, uint64_t frame) { assert(mem->umem_frame_free < mem->umem_frame_max); mem->umem_frame_addr[mem->umem_frame_free++] = frame; } static uint64_t mem_avail_umem_frames(struct mem_frame_allocator *mem) { return mem->umem_frame_free; } static void mem_init_umem_frame_allocator(struct mem_frame_allocator *mem, uint32_t nr_frames) { /* Initialize umem frame allocator */ int i; mem->umem_frame_addr = calloc(nr_frames, sizeof(*mem->umem_frame_addr)); if (!mem->umem_frame_addr) { fprintf(stderr, "ERROR: Cannot allocate umem_frame_addr array sz:%u\n", nr_frames); exit(EXIT_FAILURE); } mem->umem_frame_max = nr_frames; /* The umem_frame_addr is basically index into umem->buffer memory area */ for (i = 0; i < nr_frames; i++) mem->umem_frame_addr[i] = i * FRAME_SIZE; mem->umem_frame_free = nr_frames; } static struct xsk_umem_info *configure_xsk_umem(void *buffer, uint64_t size, uint32_t frame_size, uint32_t nr_frames) { struct xsk_umem_info *umem; int ret; struct xsk_umem_config xsk_umem_cfg = { /* We recommend that you set the fill ring size >= HW RX ring size + * AF_XDP RX ring size. Make sure you fill up the fill ring * with buffers at regular intervals, and you will with this setting * avoid allocation failures in the driver. These are usually quite * expensive since drivers have not been written to assume that * allocation failures are common. For regular sockets, kernel * allocated memory is used that only runs out in OOM situations * that should be rare. */ // .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2, .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS, /* Fix later */ .comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS, .frame_size = frame_size, /* Notice XSK_UMEM__DEFAULT_FRAME_HEADROOM is zero */ .frame_headroom = 256, //.frame_headroom = 0, .flags = 0 }; umem = calloc(1, sizeof(*umem)); if (!umem) return NULL; ret = xsk_umem__create(&umem->umem, buffer, size, &umem->init_fq, &umem->init_cq, &xsk_umem_cfg); if (ret) { errno = -ret; return NULL; } umem->buffer = buffer; /* Setup our own umem frame allocator system */ mem_init_umem_frame_allocator(&umem->mem, nr_frames); return umem; } static int xsk_populate_fill_ring(struct xsk_ring_prod *fq, struct xsk_umem_info *umem, int nr_frames) { uint32_t idx; int ret, i; /* Stuff the receive path with buffers, we assume we have enough */ ret = xsk_ring_prod__reserve(fq, nr_frames, &idx); if (ret != nr_frames) goto error_exit; for (i = 0; i < nr_frames; i++) *xsk_ring_prod__fill_addr(fq, idx++) = mem_alloc_umem_frame(&umem->mem); xsk_ring_prod__submit(fq, nr_frames); return 0; error_exit: return -EINVAL; } static struct xsk_socket_info *xsk_configure_socket(struct config *cfg, struct xsk_umem_info *umem, int queue_id, int xsks_map_fd) { struct xsk_socket_config xsk_cfg; struct xsk_socket_info *xsk_info; int _queue_id = queue_id; uint32_t prog_id = 0; int ret; xsk_info = calloc(1, sizeof(*xsk_info)); if (!xsk_info) return NULL; /* If user specified explicit --queue number then use that */ if (cfg->xsk_if_queue >= 0) _queue_id = cfg->xsk_if_queue; xsk_info->queue_id = _queue_id; xsk_info->umem = umem; xsk_cfg.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS; xsk_cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS; xsk_cfg.libbpf_flags = XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD; xsk_cfg.xdp_flags = cfg->xdp_flags; xsk_cfg.bind_flags = cfg->xsk_bind_flags; // ret = xsk_socket__create(&xsk_info->xsk, cfg->ifname, // _queue_id, umem->umem, &xsk_info->rx, // &xsk_info->tx, &xsk_cfg); ret = xsk_socket__create_shared(&xsk_info->xsk, cfg->ifname, _queue_id, umem->umem, &xsk_info->rx, &xsk_info->tx, &xsk_info->fq, &xsk_info->cq, &xsk_cfg); if (ret) goto error_exit; ret = bpf_get_link_xdp_id(cfg->ifindex, &prog_id, cfg->xdp_flags); if (ret) goto error_exit; /* Due to XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD manually update map */ // xsk_socket__update_xskmap(xsk_info->xsk, xsks_map_fd); return xsk_info; error_exit: errno = -ret; return NULL; } static void complete_tx(struct xsk_socket_info *xsk) { unsigned int completed; uint32_t idx_cq; if (!xsk->outstanding_tx) return; sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0); /* Collect/free completed TX buffers */ completed = xsk_ring_cons__peek(&xsk->cq, XSK_RING_CONS__DEFAULT_NUM_DESCS, &idx_cq); if (completed > 0) { for (int i = 0; i < completed; i++) mem_free_umem_frame(&xsk->umem->mem, *xsk_ring_cons__comp_addr(&xsk->cq, idx_cq++)); xsk_ring_cons__release(&xsk->cq, completed); xsk->outstanding_tx -= completed < xsk->outstanding_tx ? completed : xsk->outstanding_tx; } } static inline __sum16 csum16_add(__sum16 csum, __be16 addend) { uint16_t res = (uint16_t)csum; res += (__u16)addend; return (__sum16)(res + (res < (__u16)addend)); } static inline __sum16 csum16_sub(__sum16 csum, __be16 addend) { return csum16_add(csum, ~addend); } static inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new) { *sum = ~csum16_add(csum16_sub(~(*sum), old), new); } /** * BTF accessing XDP-hints * ----------------------- * Accessing the XDP-hints via BTF requires setup done earlier. As our target * application have real-time requirements, it is preferred that the setup can * happen outside the packet processing path. E.g. avoid doing the setup first * time a packet with a new BTF-ID is seen. */ static int print_meta_info_time(uint8_t *pkt, struct xdp_hints_rx_time *meta, __u32 qid) { __u64 time_now; // = gettime(); __u64 *rx_ktime_ptr; /* Points directly to member memory */ __u64 rx_ktime; __u64 diff; int err; /* API doesn't involve allocations to access BTF struct member */ err = xsk_btf__read((void **)&rx_ktime_ptr, sizeof(*rx_ktime_ptr), &meta->rx_ktime, meta->xbi, pkt); if (err) { fprintf(stderr, "ERROR(%d) no rx_ktime?!\n", err); return err; } /* Notice how rx_ktime_ptr becomes a pointer into struct memory */ rx_ktime = *rx_ktime_ptr; time_now = gettime(); diff = time_now - rx_ktime; if (debug_meta) printf("Q[%u] meta-time rx_ktime:%llu time_now:%llu diff:%llu ns\n", qid, rx_ktime, time_now, diff); return 0; } /* Demo API xsk_btf__read_field() that use string for BTF lookup */ static int print_meta_info_time_api2(uint8_t *pkt, __u32 qid) { struct xsk_btf_info *xbi = xdp_hints_rx_time.xbi; __u64 time_now; // = gettime(); __u64 *rx_ktime_ptr; /* Points directly to member memory */ __u64 rx_ktime; __u64 diff; int err; /* This API cache string lookup (in hashmap), which cause an * allocation first time this is called. Something to consider * for real-time use-cases. */ err = xsk_btf__read_field((void **)&rx_ktime_ptr, sizeof(*rx_ktime_ptr), "rx_ktime", xbi, pkt); if (err) { fprintf(stderr, "ERROR(%d) no rx_ktime?!\n", err); return err; } rx_ktime = *rx_ktime_ptr; /* same as XSK_BTF_READ_FIELD_INTO(rx_ktime, rx_ktime, xbi, pkt); */ time_now = gettime(); diff = time_now - rx_ktime; if (debug_meta) printf("Q[%u] meta-time rx_ktime:%llu time_now:%llu diff:%llu ns\n", qid, rx_ktime, time_now, diff); return 0; } static void print_meta_info_mark(uint8_t *pkt, struct xdp_hints_mark *meta, __u32 qid) { struct xsk_btf_info *xbi = meta->xbi; __u32 mark = 0; /* The 'mark' value is not updated in case of errors */ XSK_BTF_READ_INTO(mark, &meta->mark, xbi, pkt); if (debug_meta) printf("Q[%u] meta-mark mark:%u\n", qid, mark); } static void print_meta_info_via_btf(uint8_t *pkt, struct xsk_socket_info *xsk) { __u32 btf_id = xsk_umem__btf_id(pkt); __u32 qid = xsk->queue_id; if (btf_id == 0) { if (debug_meta) printf("No meta BTF info (btf_id zero)\n"); return; } if (btf_id == xdp_hints_rx_time.btf_type_id) { print_meta_info_time(pkt, &xdp_hints_rx_time, qid); } else if (btf_id == xdp_hints_mark.btf_type_id) { print_meta_info_mark(pkt, &xdp_hints_mark, qid); } } /* As debug tool print some info about packet */ static void print_pkt_info(uint8_t *pkt, uint32_t len) { struct ethhdr *eth = (struct ethhdr *) pkt; __u16 proto = ntohs(eth->h_proto); char *fmt = "DEBUG-pkt len=%04d Eth-proto:0x%X %s " "src:%s -> dst:%s\n"; char src_str[128] = { 0 }; char dst_str[128] = { 0 }; if (proto == ETH_P_IP) { struct iphdr *ipv4 = (struct iphdr *) (eth + 1); inet_ntop(AF_INET, &ipv4->saddr, src_str, sizeof(src_str)); inet_ntop(AF_INET, &ipv4->daddr, dst_str, sizeof(dst_str)); printf(fmt, len, proto, "IPv4", src_str, dst_str); } else if (proto == ETH_P_ARP) { printf(fmt, len, proto, "ARP", "", ""); } else if (proto == ETH_P_IPV6) { struct ipv6hdr *ipv6 = (struct ipv6hdr *) (eth + 1); inet_ntop(AF_INET6, &ipv6->saddr, src_str, sizeof(src_str)); inet_ntop(AF_INET6, &ipv6->daddr, dst_str, sizeof(dst_str)); printf(fmt, len, proto, "IPv6", src_str, dst_str); } else { printf(fmt, len, proto, "Unknown", "", ""); } } static bool process_packet(struct xsk_socket_info *xsk, uint64_t addr, uint32_t len) { uint8_t *pkt = xsk_umem__get_data(xsk->umem->buffer, addr); print_meta_info_via_btf(pkt, xsk); //if (debug) // printf("XXX addr:0x%lX pkt_ptr:0x%p\n", addr, pkt); if (debug_pkt) print_pkt_info(pkt, len); /* Lesson#3: Write an IPv6 ICMP ECHO parser to send responses * * Some assumptions to make it easier: * - No VLAN handling * - Only if nexthdr is ICMP * - Just return all data with MAC/IP swapped, and type set to * ICMPV6_ECHO_REPLY * - Recalculate the icmp checksum */ if (true) { int ret; uint32_t tx_idx = 0; uint8_t tmp_mac[ETH_ALEN]; struct in6_addr tmp_ip; struct ethhdr *eth = (struct ethhdr *) pkt; struct ipv6hdr *ipv6 = (struct ipv6hdr *) (eth + 1); struct icmp6hdr *icmp = (struct icmp6hdr *) (ipv6 + 1); if (ntohs(eth->h_proto) != ETH_P_IPV6 || len < (sizeof(*eth) + sizeof(*ipv6) + sizeof(*icmp)) || ipv6->nexthdr != IPPROTO_ICMPV6 || icmp->icmp6_type != ICMPV6_ECHO_REQUEST) return false; memcpy(tmp_mac, eth->h_dest, ETH_ALEN); memcpy(eth->h_dest, eth->h_source, ETH_ALEN); memcpy(eth->h_source, tmp_mac, ETH_ALEN); memcpy(&tmp_ip, &ipv6->saddr, sizeof(tmp_ip)); memcpy(&ipv6->saddr, &ipv6->daddr, sizeof(tmp_ip)); memcpy(&ipv6->daddr, &tmp_ip, sizeof(tmp_ip)); icmp->icmp6_type = ICMPV6_ECHO_REPLY; csum_replace2(&icmp->icmp6_cksum, htons(ICMPV6_ECHO_REQUEST << 8), htons(ICMPV6_ECHO_REPLY << 8)); /* Here we sent the packet out of the receive port. Note that * we allocate one entry and schedule it. Your design would be * faster if you do batch processing/transmission */ ret = xsk_ring_prod__reserve(&xsk->tx, 1, &tx_idx); if (ret != 1) { /* No more transmit slots, drop the packet */ return false; } xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->addr = addr; xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->len = len; xsk_ring_prod__submit(&xsk->tx, 1); xsk->outstanding_tx++; xsk->stats.tx_bytes += len; xsk->stats.tx_packets++; return true; } return false; } void restock_receive_fill_queue(struct xsk_socket_info *xsk) { unsigned int i, stock_frames; uint32_t idx_fq = 0; int ret; int free_frames = mem_avail_umem_frames(&xsk->umem->mem); __u64 start = gettime(); /* Stuff the ring with as much frames as possible */ stock_frames = xsk_prod_nb_free(&xsk->fq, mem_avail_umem_frames(&xsk->umem->mem)); if (stock_frames > 0) { ret = xsk_ring_prod__reserve(&xsk->fq, stock_frames, &idx_fq); /* This should not happen, but just in case */ if (ret != stock_frames) { printf("XXX %s() should not happen (%d vs %d)\n", __func__, stock_frames, ret); stock_frames = ret; } for (i = 0; i < stock_frames; i++) *xsk_ring_prod__fill_addr(&xsk->fq, idx_fq++) = mem_alloc_umem_frame(&xsk->umem->mem); xsk_ring_prod__submit(&xsk->fq, stock_frames); } __u64 now = gettime(); if (debug && (stock_frames || free_frames)) printf("XXX stock_frame:%d free_frames:%d cost of xsk_prod_nb_free() %llu ns\n", stock_frames, free_frames, now - start); } static void handle_receive_packets(struct xsk_socket_info *xsk) { unsigned int rcvd, i; uint32_t idx_rx = 0; rcvd = xsk_ring_cons__peek(&xsk->rx, RX_BATCH_SIZE, &idx_rx); if (!rcvd) return; /* Process received packets */ for (i = 0; i < rcvd; i++) { uint64_t addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr; uint32_t len = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len; if (!process_packet(xsk, addr, len)) mem_free_umem_frame(&xsk->umem->mem, addr); xsk->stats.rx_bytes += len; } xsk->stats.rx_packets += rcvd; restock_receive_fill_queue(xsk); xsk_ring_cons__release(&xsk->rx, rcvd); /* Do we need to wake up the kernel for transmission */ complete_tx(xsk); } static void rx_and_process(struct config *cfg, struct xsk_container *xsks) { struct pollfd fds[MAX_AF_SOCKS] = { 0 }; int ret, n_fds, i; // struct xsk_socket_info *xsk_socket = xsks->sockets[0]; // FIXME n_fds = xsks->num; for (i = 0; i < n_fds; i++) { struct xsk_socket_info *xsk_info = xsks->sockets[i]; fds[i].fd = xsk_socket__fd(xsk_info->xsk); fds[i].events = POLLIN; } while(!global_exit) { if (cfg->xsk_wakeup_mode) { /* poll will wait for events on file descriptors */ ret = poll(fds, n_fds, -1); if (ret <= 0 || ret > 1) continue; } for (i = 0; i < n_fds; i++) { struct xsk_socket_info *xsk_info = xsks->sockets[i]; //printf("XXX i[%d] queue:%d xsk_info:%p \n", // i, xsk_info->queue_id, xsk_info); handle_receive_packets(xsk_info); } } } static double calc_period(struct stats_record *r, struct stats_record *p) { double period_ = 0; __u64 period = 0; period = r->timestamp - p->timestamp; if (period > 0) period_ = ((double) period / NANOSEC_PER_SEC); return period_; } static void stats_print(struct stats_record *stats_rec, struct stats_record *stats_prev) { uint64_t packets, bytes; double period; double pps; /* packets per sec */ double bps; /* bits per sec */ char *fmt = "%-12s %'11lld pkts (%'10.0f pps)" " %'11lld Kbytes (%'6.0f Mbits/s)" " period:%f\n"; period = calc_period(stats_rec, stats_prev); if (period == 0) period = 1; packets = stats_rec->rx_packets - stats_prev->rx_packets; pps = packets / period; bytes = stats_rec->rx_bytes - stats_prev->rx_bytes; bps = (bytes * 8) / period / 1000000; printf(fmt, "AF_XDP RX:", stats_rec->rx_packets, pps, stats_rec->rx_bytes / 1000 , bps, period); packets = stats_rec->tx_packets - stats_prev->tx_packets; pps = packets / period; bytes = stats_rec->tx_bytes - stats_prev->tx_bytes; bps = (bytes * 8) / period / 1000000; printf(fmt, " TX:", stats_rec->tx_packets, pps, stats_rec->tx_bytes / 1000 , bps, period); printf("\n"); } static void *stats_poll(void *arg) { unsigned int interval = 2; struct xsk_container *xsks = arg; struct xsk_socket_info *xsk = xsks->sockets[0]; // FIXME static struct stats_record previous_stats = { 0 }; previous_stats.timestamp = gettime(); /* Trick to pretty printf with thousands separators use %' */ setlocale(LC_NUMERIC, "en_US"); while (!global_exit) { sleep(interval); xsk->stats.timestamp = gettime(); stats_print(&xsk->stats, &previous_stats); previous_stats = xsk->stats; } return NULL; } static void enter_xsks_into_map(int xsks_map, struct xsk_container *xsks) { int i; if (xsks_map < 0) { fprintf(stderr, "ERROR: no xsks map found: %s\n", strerror(xsks_map)); exit(EXIT_FAILURE); } for (i = 0; i < xsks->num; i++) { int fd = xsk_socket__fd(xsks->sockets[i]->xsk); int key, ret; key = i; /* When entering XSK socket into map redirect have effect */ ret = bpf_map_update_elem(xsks_map, &key, &fd, 0); if (ret) { fprintf(stderr, "ERROR: bpf_map_update_elem %d\n", i); exit(EXIT_FAILURE); } if (debug) printf("%s() enable redir for xsks_map_fd:%d Key:%d fd:%d\n", __func__, xsks_map, key, fd); } } static void exit_application(int signal) { signal = signal; global_exit = true; } int main(int argc, char **argv) { int ret, err; int xsks_map_fd; void *packet_buffer; uint64_t packet_buffer_size; struct rlimit rlim = {RLIM_INFINITY, RLIM_INFINITY}; struct config cfg = { .ifindex = -1, .do_unload = false, .filename = "af_xdp_kern.o", .progsec = "xdp_sock", .xsk_wakeup_mode = true, /* Default, change via --spin */ .xsk_if_queue = -1, }; pthread_t stats_poll_thread; struct xsk_umem_info *umem; struct xsk_container xsks; int queues_max, queues_set; int total_nr_frames, nr_frames; int i; /* Default to AF_XDP copy mode. * * It seems counter intuitive to not-use Zero-Copy mode, but there is an * explaination. Our application don't consume EVERY packet, e.g * letting netstack handle ARP/NDP packets via returning XDP_PASS in * bpf-prog. * * XDP_PASS in Zero-Copy mode results in the kernel allocating a new * memory page (and SKB) and copying over packet contents, before giving * packet to netstack. * * For our Real-Time use-case, we want to avoid allocations more than * cost of copying over packet data to our preallocated AF_XDP umem * area. */ cfg.xsk_bind_flags = XDP_COPY; struct bpf_object *bpf_obj = NULL; struct bpf_map *map; /* Global shutdown handler */ signal(SIGINT, exit_application); /* Cmdline options can change progsec */ parse_cmdline_args(argc, argv, long_options, &cfg, __doc__); /* Required option */ if (cfg.ifindex == -1) { fprintf(stderr, "ERROR: Required option --dev missing\n\n"); usage(argv[0], __doc__, long_options, (argc == 1)); return EXIT_FAIL_OPTION; } /* Unload XDP program if requested */ if (cfg.do_unload) return xdp_link_detach(cfg.ifindex, cfg.xdp_flags, 0); /* Require loading custom BPF program */ if (cfg.filename[0] == 0) { fprintf(stderr, "ERROR: must load custom BPF-prog\n"); exit(EXIT_FAILURE); } else { bpf_obj = load_bpf_and_xdp_attach(&cfg); if (!bpf_obj) { /* Error handling done in load_bpf_and_xdp_attach() */ exit(EXIT_FAILURE); } /* We also need to load the xsks_map */ map = bpf_object__find_map_by_name(bpf_obj, "xsks_map"); xsks_map_fd = bpf_map__fd(map); if (xsks_map_fd < 0) { fprintf(stderr, "ERROR: no xsks map found: %s\n", strerror(xsks_map_fd)); exit(EXIT_FAILURE); } } queues_max = ethtool_get_max_channels(cfg.ifname); queues_set = ethtool_get_channels(cfg.ifname); if (verbose || debug_meta) printf("Interface: %s - queues max:%d set:%d\n", cfg.ifname, queues_max, queues_set); xsks.num = queues_set; /* Allocate frames according to how many queues are handled */ nr_frames = NUM_FRAMES; total_nr_frames = nr_frames * xsks.num; if (verbose || debug_meta) printf("For XSK queues:%d alloc total:%d frames (per-q:%d)\n", xsks.num, total_nr_frames, nr_frames); err = init_btf_info_via_bpf_object(bpf_obj); if (err) { fprintf(stderr, "ERROR(%d): Invalid BTF info: errno:%s\n", err, strerror(errno)); return EXIT_FAILURE; } /* Allow unlimited locking of memory, so all memory needed for packet * buffers can be locked. */ if (setrlimit(RLIMIT_MEMLOCK, &rlim)) { fprintf(stderr, "ERROR: setrlimit(RLIMIT_MEMLOCK) \"%s\"\n", strerror(errno)); exit(EXIT_FAILURE); } /* Allocate memory for total_nr_frames of the default XDP frame size */ packet_buffer_size = total_nr_frames * FRAME_SIZE; if (posix_memalign(&packet_buffer, getpagesize(), /* PAGE_SIZE aligned */ packet_buffer_size)) { fprintf(stderr, "ERROR: Can't allocate buffer memory \"%s\"\n", strerror(errno)); exit(EXIT_FAILURE); } /* Initialize shared packet_buffer for umem usage */ umem = configure_xsk_umem(packet_buffer, packet_buffer_size, FRAME_SIZE, total_nr_frames); if (umem == NULL) { fprintf(stderr, "ERROR: Can't create umem \"%s\"\n", strerror(errno)); exit(EXIT_FAILURE); } /* Open and configure the AF_XDP (xsk) socket(s) */ for (i = 0; i < xsks.num; i++) { struct xsk_socket_info *xski; xski = xsk_configure_socket(&cfg, umem, i, xsks_map_fd); if (xski == NULL) { fprintf(stderr, "ERROR(%d): Can't setup AF_XDP socket " "\"%s\"\n", errno, strerror(errno)); exit(EXIT_FAILURE); } xsks.sockets[i] = xski; if (xsk_populate_fill_ring(&xski->fq, umem, nr_frames / 2)) { fprintf(stderr, "ERROR: Can't populate fill ring\n"); exit(EXIT_FAILURE); } } enter_xsks_into_map(xsks_map_fd, &xsks); /* Start thread to do statistics display */ if (verbose) { ret = pthread_create(&stats_poll_thread, NULL, stats_poll, &xsks); if (ret) { fprintf(stderr, "ERROR: Failed creating statistics thread " "\"%s\"\n", strerror(errno)); exit(EXIT_FAILURE); } } /* Receive and count packets than drop them */ rx_and_process(&cfg, &xsks); /* Cleanup */ for (i = 0; i < xsks.num; i++) xsk_socket__delete(xsks.sockets[i]->xsk); xsk_umem__delete(umem->umem); xdp_link_detach(cfg.ifindex, cfg.xdp_flags, 0); return EXIT_OK; }