Files
xdp-project-bpf-examples/AF_XDP-interaction/af_xdp_user.c
Jesper Dangaard Brouer a0e2c91983 AF_XDP-interaction: lib user don't need to check for btf_id
Now that lib side of xsk_btf__init_xdp_hint check for a valid
btf_id variable, then users of the call doesn't need to check
for the existance of a btf_id member.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
2022-04-05 10:35:34 +02:00

1668 lines
44 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#define _GNU_SOURCE /* Needed by sched_getcpu */
#include <sched.h>
#include <assert.h>
#include <errno.h>
#include <getopt.h>
#include <locale.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/resource.h>
#include <bpf/bpf.h>
#include <bpf/xsk.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <linux/if_link.h>
#include <linux/if_ether.h>
#include <netinet/ether.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/icmpv6.h>
#include <linux/udp.h>
#include <linux/socket.h>
#ifndef SO_PREFER_BUSY_POLL
#define SO_PREFER_BUSY_POLL 69
#endif
#ifndef SO_BUSY_POLL_BUDGET
#define SO_BUSY_POLL_BUDGET 70
#endif
#include <bpf/btf.h> /* provided by libbpf */
#include "common_params.h"
#include "common_user_bpf_xdp.h"
// #include "common_libbpf.h"
#include "af_xdp_kern_shared.h"
#include "lib_xsk_extend.h"
#include "ethtool_utils.h"
#include "lib_checksum.h"
#define NUM_FRAMES 4096 /* Frames per queue */
#define FRAME_SIZE XSK_UMEM__DEFAULT_FRAME_SIZE /* 4096 */
#define FRAME_SIZE_MASK (FRAME_SIZE - 1)
#define RX_BATCH_SIZE 64
#define FQ_REFILL_MAX (RX_BATCH_SIZE * 2)
#define INVALID_UMEM_FRAME UINT64_MAX
struct mem_frame_allocator {
uint32_t umem_frame_free;
uint32_t umem_frame_max;
uint64_t *umem_frame_addr; /* array */
};
struct xsk_umem_info {
struct xsk_ring_prod init_fq;
struct xsk_ring_cons init_cq;
struct xsk_umem *umem;
void *buffer;
struct mem_frame_allocator mem;
};
struct stats_record {
uint64_t timestamp;
uint64_t rx_packets;
uint64_t rx_bytes;
uint64_t tx_packets;
uint64_t tx_bytes;
};
struct xsk_socket_info {
struct xsk_ring_cons rx;
struct xsk_ring_prod tx;
struct xsk_umem_info *umem;
struct xsk_socket *xsk;
struct xsk_ring_prod fq;
struct xsk_ring_cons cq;
uint32_t outstanding_tx;
int queue_id;
struct stats_record stats;
struct stats_record prev_stats;
};
struct xsk_container {
struct xsk_socket_info *sockets[MAX_AF_SOCKS];
int num; /* Number of xsk_sockets configured */
};
static void __exit_with_error(int error, const char *file, const char *func,
int line)
{
fprintf(stderr, "%s:%s:%i: errno: %d/\"%s\"\n", file, func,
line, error, strerror(error));
exit(EXIT_FAILURE);
}
#define exit_with_error(error) __exit_with_error(error, __FILE__, __func__, __LINE__)
/**
* BTF setup XDP-hints
* -------------------
* Setup the data structures for accessing the XDP-hints provided by
* kernel side BPF-prog via decoding BTF-info provided in BPF
* ELF-object file.
*/
/* This struct BTF mirrors kernel-side struct xdp_hints_rx_time */
struct xdp_hints_rx_time {
__u32 btf_type_id; /* cached xsk_btf__btf_type_id(xbi) */
struct xsk_btf_info *xbi;
struct xsk_btf_member rx_ktime;
struct xsk_btf_member xdp_rx_cpu;
} xdp_hints_rx_time = { 0 };
/* This struct BTF mirrors kernel-side struct xdp_hints_mark */
struct xdp_hints_mark {
__u32 btf_type_id; /* cached xsk_btf__btf_type_id(xbi) */
struct xsk_btf_info *xbi;
struct xsk_btf_member mark;
} xdp_hints_mark = { 0 };
struct xsk_btf_info *setup_btf_info(struct btf *btf,
const char *struct_name)
{
struct xsk_btf_info *xbi = NULL;
int err;
err = xsk_btf__init_xdp_hint(btf, struct_name, &xbi);
if (err) {
fprintf(stderr, "WARN(%d): Cannot BTF locate valid struct:%s\n",
err, struct_name);
return NULL;
}
if (debug_meta)
printf("Setup BTF based XDP hints for struct: %s\n",
struct_name);
return xbi;
}
int init_btf_info_via_bpf_object(struct bpf_object *bpf_obj)
{
struct btf *btf = bpf_object__btf(bpf_obj);
struct xsk_btf_info *xbi;
xbi = setup_btf_info(btf, "xdp_hints_rx_time");
if (xbi) {
/* Lookup info on required member "rx_ktime" */
if (!xsk_btf__field_member("rx_ktime", xbi,
&xdp_hints_rx_time.rx_ktime))
return -EBADSLT;
if (!xsk_btf__field_member("xdp_rx_cpu", xbi,
&xdp_hints_rx_time.xdp_rx_cpu))
return -EBADSLT;
xdp_hints_rx_time.btf_type_id = xsk_btf__btf_type_id(xbi);
xdp_hints_rx_time.xbi = xbi;
}
xbi = setup_btf_info(btf, "xdp_hints_mark");
if (xbi) {
if (!xsk_btf__field_member("mark", xbi, &xdp_hints_mark.mark))
return -EBADSLT;
xdp_hints_mark.btf_type_id = xsk_btf__btf_type_id(xbi);
xdp_hints_mark.xbi = xbi;
}
return 0;
}
void pr_addr_info(const char *msg, uint64_t pkt_addr, struct xsk_umem_info *umem)
{
uint64_t pkt_nr = pkt_addr / FRAME_SIZE; /* Integer div round off */
uint32_t offset = pkt_addr - (pkt_nr * FRAME_SIZE); /* what got rounded off */
uint8_t *pkt_ptr = NULL;
if (!debug)
return;
if (umem)
pkt_ptr = xsk_umem__get_data(umem->buffer, pkt_addr);
printf(" - Addr-info: %s pkt_nr:%lu offset:%u (addr:0x%lX) ptr:%p\n",
msg, pkt_nr, offset, pkt_addr, pkt_ptr);
}
#define NANOSEC_PER_SEC 1000000000 /* 10^9 */
static uint64_t gettime(void)
{
struct timespec t;
int res;
res = clock_gettime(CLOCK_MONOTONIC, &t);
if (res < 0) {
fprintf(stderr, "Error with clock_gettime! (%i)\n", res);
exit(EXIT_FAIL);
}
return (uint64_t) t.tv_sec * NANOSEC_PER_SEC + t.tv_nsec;
}
static inline __u32 xsk_ring_prod__free(struct xsk_ring_prod *r)
{
r->cached_cons = *r->consumer + r->size;
return r->cached_cons - r->cached_prod;
}
static const char *__doc__ = "AF_XDP kernel bypass example\n";
static const struct option_wrapper long_options[] = {
{{"help", no_argument, NULL, 'h' },
"Show help", false},
{{"dev", required_argument, NULL, 'd' },
"Operate on device <ifname>", "<ifname>", true},
{{"skb-mode", no_argument, NULL, 'S' },
"Install XDP program in SKB (AKA generic) mode"},
{{"native-mode", no_argument, NULL, 'N' },
"Install XDP program in native mode"},
{{"auto-mode", no_argument, NULL, 'A' },
"Auto-detect SKB or native mode"},
{{"force", no_argument, NULL, 'F' },
"Force install, replacing existing program on interface"},
{{"copy", no_argument, NULL, 'c' },
"Force copy mode"},
{{"zero-copy", no_argument, NULL, 'z' },
"Force zero-copy mode"},
{{"queue", required_argument, NULL, 'Q' },
"Configure single interface receive queue for AF_XDP"},
{{"priority", required_argument, NULL, 'p' },
"Setup real-time priority for process"},
{{"wakeup-mode", no_argument, NULL, 'w' },
"Use poll() API waiting for packets to arrive via wakeup from kernel"},
{{"spin-mode", no_argument, NULL, 's' },
"Let userspace process spin checking for packets (disable --wakeup-mode)"},
{{"unload", no_argument, NULL, 'U' },
"Unload XDP program instead of loading"},
{{"quiet", no_argument, NULL, 'q' },
"Quiet mode (no output)"},
{{"pktinfo", no_argument, NULL, 'P' },
"Print packet info output mode (debug)"},
{{"metainfo", no_argument, NULL, 'm' },
"Print XDP metadata info output mode (debug)"},
{{"timedebug", no_argument, NULL, 't' },
"Print timestamps info for wakeup accuracy (debug)"},
{{"debug", no_argument, NULL, 'D' },
"Debug info output mode (debug)"},
{{"filename", required_argument, NULL, 1 },
"Load program from <file>", "<file>"},
{{"progsec", required_argument, NULL, 2 },
"Load program in <section> of the ELF file", "<section>"},
{{"src-ip", required_argument, NULL, 4 },
"Change IPv4 source address in generated packets", "<ip>"},
{{"dst-ip", required_argument, NULL, 5 },
"Change IPv4 destination address in generated packets", "<ip>"},
{{"busy-poll", no_argument, NULL, 'B' },
"Enable socket prefer NAPI busy-poll mode (remember adjust sysctl too)"},
{{"tx-dmac", required_argument, NULL, 'G' },
"Dest MAC addr of TX frame in aa:bb:cc:dd:ee:ff format", "aa:bb:cc:dd:ee:ff"},
{{"tx-smac", required_argument, NULL, 'H' },
"Src MAC addr of TX frame in aa:bb:cc:dd:ee:ff format", "aa:bb:cc:dd:ee:ff"},
{{"interval", required_argument, NULL, 'i' },
"Periodic TX-cyclic interval wakeup period in usec", "<usec>"},
{{"batch-pkts", required_argument, NULL, 'b' },
"Periodic TX-cyclic batch send pkts", "<pkts>"},
{{0, 0, NULL, 0 }, NULL, false}
};
static bool global_exit;
int print_libbpf_log(enum libbpf_print_level lvl, const char *fmt, va_list args) {
if (!debug && lvl >= LIBBPF_DEBUG)
return 0;
return vfprintf(stderr, fmt, args);
}
/* Later set custom log handler via: libbpf_set_print(print_libbpf_log); */
/**
* Simple memory allocator for umem frames
*/
static uint64_t mem_alloc_umem_frame(struct mem_frame_allocator *mem)
{
uint64_t frame;
if (mem->umem_frame_free == 0)
return INVALID_UMEM_FRAME;
frame = mem->umem_frame_addr[--mem->umem_frame_free];
mem->umem_frame_addr[mem->umem_frame_free] = INVALID_UMEM_FRAME;
return frame;
}
static void mem_free_umem_frame(struct mem_frame_allocator *mem, uint64_t frame)
{
assert(mem->umem_frame_free < mem->umem_frame_max);
/* Remove any packet offset from the frame addr. The kernel RX process
* will add some headroom. Our userspace TX process can also choose to
* add headroom. Thus, frame addr can be returned to our mem allocator
* including this offset.
*/
// frame = (frame / FRAME_SIZE) * FRAME_SIZE;
frame = frame & ~FRAME_SIZE_MASK;
mem->umem_frame_addr[mem->umem_frame_free++] = frame;
}
static uint64_t mem_avail_umem_frames(struct mem_frame_allocator *mem)
{
return mem->umem_frame_free;
}
static void mem_init_umem_frame_allocator(struct mem_frame_allocator *mem,
uint32_t nr_frames)
{
/* Initialize umem frame allocator */
int i;
mem->umem_frame_addr = calloc(nr_frames, sizeof(*mem->umem_frame_addr));
if (!mem->umem_frame_addr) {
fprintf(stderr,
"ERROR: Cannot allocate umem_frame_addr array sz:%u\n",
nr_frames);
exit(EXIT_FAILURE);
}
mem->umem_frame_max = nr_frames;
/* The umem_frame_addr is basically index into umem->buffer memory area */
for (i = 0; i < nr_frames; i++) {
uint64_t addr = i * FRAME_SIZE;
mem->umem_frame_addr[i] = addr;
}
mem->umem_frame_free = nr_frames;
}
static void apply_setsockopt(struct xsk_socket_info *xsk, bool opt_busy_poll,
int opt_batch_size)
{
int sock_opt;
if (!opt_busy_poll)
return;
sock_opt = 1;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_PREFER_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
sock_opt = 20;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
sock_opt = opt_batch_size;
if (setsockopt(xsk_socket__fd(xsk->xsk), SOL_SOCKET, SO_BUSY_POLL_BUDGET,
(void *)&sock_opt, sizeof(sock_opt)) < 0)
exit_with_error(errno);
}
static struct xsk_umem_info *configure_xsk_umem(void *buffer, uint64_t size,
uint32_t frame_size, uint32_t nr_frames)
{
struct xsk_umem_info *umem;
int ret;
struct xsk_umem_config xsk_umem_cfg = {
/* We recommend that you set the fill ring size >= HW RX ring size +
* AF_XDP RX ring size. Make sure you fill up the fill ring
* with buffers at regular intervals, and you will with this setting
* avoid allocation failures in the driver. These are usually quite
* expensive since drivers have not been written to assume that
* allocation failures are common. For regular sockets, kernel
* allocated memory is used that only runs out in OOM situations
* that should be rare.
*/
// .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
.fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS, /* Fix later */
.comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
.frame_size = frame_size,
/* Notice XSK_UMEM__DEFAULT_FRAME_HEADROOM is zero */
.frame_headroom = 256,
//.frame_headroom = 0,
.flags = 0
};
umem = calloc(1, sizeof(*umem));
if (!umem)
return NULL;
ret = xsk_umem__create(&umem->umem, buffer, size,
&umem->init_fq, &umem->init_cq,
&xsk_umem_cfg);
if (ret) {
errno = -ret;
return NULL;
}
umem->buffer = buffer;
/* Setup our own umem frame allocator system */
mem_init_umem_frame_allocator(&umem->mem, nr_frames);
return umem;
}
static int xsk_populate_fill_ring(struct xsk_ring_prod *fq,
struct xsk_umem_info *umem,
int nr_frames)
{
uint32_t idx;
int ret, i;
/* Stuff the receive path with buffers, we assume we have enough */
ret = xsk_ring_prod__reserve(fq, nr_frames, &idx);
if (ret != nr_frames)
goto error_exit;
for (i = 0; i < nr_frames; i++)
*xsk_ring_prod__fill_addr(fq, idx++) =
mem_alloc_umem_frame(&umem->mem);
xsk_ring_prod__submit(fq, nr_frames);
return 0;
error_exit:
return -EINVAL;
}
static struct xsk_socket_info *xsk_configure_socket(struct config *cfg,
struct xsk_umem_info *umem,
int queue_id,
int xsks_map_fd)
{
struct xsk_socket_config xsk_cfg;
struct xsk_socket_info *xsk_info;
int _queue_id = queue_id;
uint32_t prog_id = 0;
int ret;
xsk_info = calloc(1, sizeof(*xsk_info));
if (!xsk_info)
return NULL;
/* If user specified explicit --queue number then use that */
if (cfg->xsk_if_queue >= 0)
_queue_id = cfg->xsk_if_queue;
xsk_info->queue_id = _queue_id;
xsk_info->umem = umem;
xsk_cfg.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS;
xsk_cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS;
xsk_cfg.libbpf_flags = XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD;
xsk_cfg.xdp_flags = cfg->xdp_flags;
xsk_cfg.bind_flags = cfg->xsk_bind_flags;
// ret = xsk_socket__create(&xsk_info->xsk, cfg->ifname,
// _queue_id, umem->umem, &xsk_info->rx,
// &xsk_info->tx, &xsk_cfg);
ret = xsk_socket__create_shared(&xsk_info->xsk, cfg->ifname,
_queue_id, umem->umem,
&xsk_info->rx,
&xsk_info->tx,
&xsk_info->fq,
&xsk_info->cq,
&xsk_cfg);
if (ret)
goto error_exit;
ret = bpf_get_link_xdp_id(cfg->ifindex, &prog_id, cfg->xdp_flags);
if (ret)
goto error_exit;
/* Due to XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD manually update map */
// xsk_socket__update_xskmap(xsk_info->xsk, xsks_map_fd);
apply_setsockopt(xsk_info, cfg->opt_busy_poll, RX_BATCH_SIZE);
return xsk_info;
error_exit:
errno = -ret;
return NULL;
}
static int kick_tx(struct xsk_socket_info *xsk)
{
int err = 0;
int ret;
ret = sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
if (ret < 0) { /* On error, -1 is returned, and errno is set */
fprintf(stderr, "WARN: %s() sendto() failed with errno:%d\n",
__func__, errno);
err = errno;
}
/* Kernel samples/bpf/ xdp_sock_user.c kick_tx variant doesn't
* treat the following errno values as errors:
* ENOBUFS , EAGAIN , EBUSY , ENETDOWN
*/
return err;
}
static int complete_tx(struct xsk_socket_info *xsk)
{
unsigned int completed;
uint32_t idx_cq;
int err;
if (!xsk->outstanding_tx)
return 0;
/* Notify kernel via sendto syscall that TX packet are avail */
err = kick_tx(xsk);
/* Collect/free completed TX buffers */
completed = xsk_ring_cons__peek(&xsk->cq,
XSK_RING_CONS__DEFAULT_NUM_DESCS,
&idx_cq);
if (completed > 0) {
for (int i = 0; i < completed; i++) {
uint64_t addr;
addr = *xsk_ring_cons__comp_addr(&xsk->cq, idx_cq++);
mem_free_umem_frame(&xsk->umem->mem, addr);
//pr_addr_info(__func__, addr, xsk->umem);
}
xsk_ring_cons__release(&xsk->cq, completed);
if (completed > xsk->outstanding_tx) {
fprintf(stderr, "WARN: %s() "
"reset outstanding_tx(%d) as completed(%d)"
"more than outstanding TX pakcets\n",
__func__, xsk->outstanding_tx, completed);
}
xsk->outstanding_tx -= completed < xsk->outstanding_tx ?
completed : xsk->outstanding_tx;
}
return err;
}
static inline __sum16 csum16_add(__sum16 csum, __be16 addend)
{
uint16_t res = (uint16_t)csum;
res += (__u16)addend;
return (__sum16)(res + (res < (__u16)addend));
}
static inline __sum16 csum16_sub(__sum16 csum, __be16 addend)
{
return csum16_add(csum, ~addend);
}
static inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new)
{
*sum = ~csum16_add(csum16_sub(~(*sum), old), new);
}
/**
* Packet fill helpers
*/
static uint8_t base_pkt_data[FRAME_SIZE];
/* Can be changed via cmdline options (-G|--tx-dmac) or (-H|--tx-smac) */
static struct ether_addr default_tx_smac = {{ 0x24, 0x5e, 0xbe, 0x57, 0xf1, 0x64 }};
static struct ether_addr default_tx_dmac = {{ 0xbc, 0xee, 0x7b, 0xda, 0xc2, 0x62 }};
#define MIN_PKT_SIZE 64
static uint16_t opt_pkt_size = MIN_PKT_SIZE;
#define PKT_HDR_SIZE (sizeof(struct ethhdr) + sizeof(struct iphdr) + \
sizeof(struct udphdr))
#define ETH_FCS_SIZE 4
#define PKT_SIZE (opt_pkt_size - ETH_FCS_SIZE)
#define IP_PKT_SIZE (PKT_SIZE - sizeof(struct ethhdr))
#define UDP_PKT_SIZE (IP_PKT_SIZE - sizeof(struct iphdr))
#define UDP_PKT_DATA_SIZE (UDP_PKT_SIZE - sizeof(struct udphdr))
static void gen_eth_hdr(struct config *cfg, struct ethhdr *eth_hdr)
{
/* Ethernet header:
* Can be changed via cmdline options (-G|--tx-dmac) or (-H|--tx-smac)
*/
memcpy(eth_hdr->h_dest , &cfg->opt_tx_dmac, ETH_ALEN);
memcpy(eth_hdr->h_source, &cfg->opt_tx_smac, ETH_ALEN);
eth_hdr->h_proto = htons(ETH_P_IP);
}
static char *opt_ip_str_src = "192.168.44.1";
static char *opt_ip_str_dst = "192.168.44.3";
static void gen_ip_hdr(struct config *cfg, struct iphdr *ip_hdr)
{
if (cfg->opt_ip_src == 0)
get_ipv4_u32(opt_ip_str_src, &cfg->opt_ip_src);
if (cfg->opt_ip_dst == 0)
get_ipv4_u32(opt_ip_str_dst, &cfg->opt_ip_dst);
/* IP header */
ip_hdr->version = IPVERSION;
ip_hdr->ihl = 0x5; /* 20 byte header */
ip_hdr->tos = 0x0;
ip_hdr->tot_len = htons(IP_PKT_SIZE);
ip_hdr->id = 0;
ip_hdr->frag_off = 0;
ip_hdr->ttl = IPDEFTTL;
ip_hdr->protocol = IPPROTO_UDP;
ip_hdr->saddr = cfg->opt_ip_src;
ip_hdr->daddr = cfg->opt_ip_dst;
/* IP header checksum */
ip_hdr->check = 0;
ip_hdr->check = ip_fast_csum((const void *)ip_hdr, ip_hdr->ihl);
}
static uint32_t opt_pkt_fill_pattern = 0x41424344;
static void gen_udp_hdr(struct udphdr *udp_hdr, struct iphdr *ip_hdr)
{
/* UDP header */
udp_hdr->source = htons(0x1000);
udp_hdr->dest = htons(0x1000);
udp_hdr->len = htons(UDP_PKT_SIZE);
/* UDP data */
memset32_htonl((void*)udp_hdr + sizeof(struct udphdr),
opt_pkt_fill_pattern,
UDP_PKT_DATA_SIZE);
/* UDP header checksum */
udp_hdr->check = 0;
udp_hdr->check = udp_csum(ip_hdr->saddr, ip_hdr->daddr, UDP_PKT_SIZE,
IPPROTO_UDP, (__u16 *)udp_hdr);
}
static void gen_base_pkt(struct config *cfg, uint8_t *pkt_ptr)
{
struct ethhdr *eth_hdr = (struct ethhdr *)pkt_ptr;
struct iphdr *ip_hdr = (struct iphdr *)(pkt_ptr +
sizeof(struct ethhdr));
struct udphdr *udp_hdr = (struct udphdr *)(pkt_ptr +
sizeof(struct ethhdr) +
sizeof(struct iphdr));
gen_eth_hdr(cfg, eth_hdr);
gen_ip_hdr(cfg, ip_hdr);
gen_udp_hdr(udp_hdr, ip_hdr);
}
/**
* BTF accessing XDP-hints
* -----------------------
* Accessing the XDP-hints via BTF requires setup done earlier. As our target
* application have real-time requirements, it is preferred that the setup can
* happen outside the packet processing path. E.g. avoid doing the setup first
* time a packet with a new BTF-ID is seen.
*/
static int print_meta_info_time(uint8_t *pkt, struct xdp_hints_rx_time *meta,
__u32 qid)
{
__u64 time_now; // = gettime();
__u32 xdp_rx_cpu = 0xffff;
__u32 cpu_running;
__u64 *rx_ktime_ptr; /* Points directly to member memory */
__u64 rx_ktime;
__u64 diff;
int err;
/* Quick stats */
static bool first = true;
static unsigned int max = 0;
static unsigned int min = -1;
static double tot = 0;
static __u64 cnt = 0;
/* API doesn't involve allocations to access BTF struct member */
err = xsk_btf__read((void **)&rx_ktime_ptr, sizeof(*rx_ktime_ptr),
&meta->rx_ktime, meta->xbi, pkt);
if (err) {
fprintf(stderr, "ERROR(%d) no rx_ktime?!\n", err);
return err;
}
/* Notice how rx_ktime_ptr becomes a pointer into struct memory */
rx_ktime = *rx_ktime_ptr;
time_now = gettime();
diff = time_now - rx_ktime;
/* Quick stats, exclude first measurement */
if (!first) {
min = (min < diff) ? min : diff;
max = (max > diff) ? max : diff;
cnt++;
tot += diff;
}
first = false;
cpu_running = sched_getcpu();
XSK_BTF_READ_INTO(xdp_rx_cpu, &meta->xdp_rx_cpu, meta->xbi, pkt);
if (debug_meta)
printf("Q[%u] CPU[rx:%d/run:%d]:%s"
" meta-time rx_ktime:%llu time_now:%llu diff:%llu ns"
"(avg:%.0f min:%u max:%u )\n",
qid, xdp_rx_cpu, cpu_running,
(xdp_rx_cpu == cpu_running) ? "same" : "remote",
rx_ktime, time_now, diff,
tot / cnt, min , max);
return 0;
}
/* Demo API xsk_btf__read_field() that use string for BTF lookup */
static int print_meta_info_time_api2(uint8_t *pkt, __u32 qid)
{
struct xsk_btf_info *xbi = xdp_hints_rx_time.xbi;
__u64 time_now; // = gettime();
__u64 *rx_ktime_ptr; /* Points directly to member memory */
__u64 rx_ktime;
__u64 diff;
int err;
/* This API cache string lookup (in hashmap), which cause an
* allocation first time this is called. Something to consider
* for real-time use-cases.
*/
err = xsk_btf__read_field((void **)&rx_ktime_ptr, sizeof(*rx_ktime_ptr),
"rx_ktime", xbi, pkt);
if (err) {
fprintf(stderr, "ERROR(%d) no rx_ktime?!\n", err);
return err;
}
rx_ktime = *rx_ktime_ptr;
/* same as XSK_BTF_READ_FIELD_INTO(rx_ktime, rx_ktime, xbi, pkt); */
time_now = gettime();
diff = time_now - rx_ktime;
if (debug_meta)
printf("Q[%u] meta-time rx_ktime:%llu time_now:%llu diff:%llu ns\n",
qid, rx_ktime, time_now, diff);
return 0;
}
static void print_meta_info_mark(uint8_t *pkt, struct xdp_hints_mark *meta,
__u32 qid)
{
struct xsk_btf_info *xbi = meta->xbi;
__u32 mark = 0;
/* The 'mark' value is not updated in case of errors */
XSK_BTF_READ_INTO(mark, &meta->mark, xbi, pkt);
if (debug_meta)
printf("Q[%u] meta-mark mark:%u\n", qid, mark);
}
static void print_meta_info_via_btf(uint8_t *pkt, struct xsk_socket_info *xsk)
{
__u32 btf_id = xsk_umem__btf_id(pkt);
__u32 qid = xsk->queue_id;
if (btf_id == 0) {
if (debug_meta)
printf("No meta BTF info (btf_id zero)\n");
return;
}
if (btf_id == xdp_hints_rx_time.btf_type_id) {
print_meta_info_time(pkt, &xdp_hints_rx_time, qid);
} else if (btf_id == xdp_hints_mark.btf_type_id) {
print_meta_info_mark(pkt, &xdp_hints_mark, qid);
}
}
/* As debug tool print some info about packet */
static void print_pkt_info(uint8_t *pkt, uint32_t len)
{
struct ethhdr *eth = (struct ethhdr *) pkt;
__u16 proto = ntohs(eth->h_proto);
char *fmt = "DEBUG-pkt len=%04d Eth-proto:0x%X %s "
"src:%s -> dst:%s\n";
char src_str[128] = { 0 };
char dst_str[128] = { 0 };
if (proto == ETH_P_IP) {
struct iphdr *ipv4 = (struct iphdr *) (eth + 1);
inet_ntop(AF_INET, &ipv4->saddr, src_str, sizeof(src_str));
inet_ntop(AF_INET, &ipv4->daddr, dst_str, sizeof(dst_str));
printf(fmt, len, proto, "IPv4", src_str, dst_str);
} else if (proto == ETH_P_ARP) {
printf(fmt, len, proto, "ARP", "", "");
} else if (proto == ETH_P_IPV6) {
struct ipv6hdr *ipv6 = (struct ipv6hdr *) (eth + 1);
inet_ntop(AF_INET6, &ipv6->saddr, src_str, sizeof(src_str));
inet_ntop(AF_INET6, &ipv6->daddr, dst_str, sizeof(dst_str));
printf(fmt, len, proto, "IPv6", src_str, dst_str);
} else {
printf(fmt, len, proto, "Unknown", "", "");
}
}
static int tx_pkt(struct config *cfg, struct xsk_socket_info *xsk)
{
struct xsk_umem_info *umem = xsk->umem;
uint64_t pkt_addr = mem_alloc_umem_frame(&umem->mem);
uint8_t *pkt = NULL;
uint32_t offset = 0; // 256;
pkt_addr += offset;
pr_addr_info(__func__, pkt_addr, umem);
pkt = xsk_umem__get_data(umem->buffer, pkt_addr);
gen_base_pkt(cfg, pkt);
{
uint32_t tx_idx = 0;
int ret;
ret = xsk_ring_prod__reserve(&xsk->tx, 1, &tx_idx);
if (ret != 1) {
/* No more transmit slots, drop the packet */
mem_free_umem_frame(&umem->mem, pkt_addr);
fprintf(stderr, "ERR: %s() failed transmit, no slots\n",
__func__);
return ENOSPC;
}
xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->addr = pkt_addr;
xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->len = 64;
xsk_ring_prod__submit(&xsk->tx, 1);
xsk->outstanding_tx++;
}
return complete_tx(xsk);
}
/* Generate some fake packets (in umem area). Real system will deliver TX
* packets containing the needed control information.
*/
static int invent_tx_pkts(struct config *cfg, struct xsk_umem_info *umem,
const unsigned int n, struct xdp_desc pkts[n])
{
uint32_t len = opt_pkt_size;
uint32_t offset = 256;
int i;
for (i = 0; i < n; i++) {
uint64_t pkt_addr = mem_alloc_umem_frame(&umem->mem);
struct xdp_desc desc;
uint8_t *pkt_data;
if (pkt_addr == INVALID_UMEM_FRAME)
return i;
pkt_addr += offset;
desc.addr = pkt_addr;
desc.len = len;
desc.options = 0;
/* Write into packet memory area */
pkt_data = xsk_umem__get_data(umem->buffer, pkt_addr);
gen_base_pkt(cfg, pkt_data);
pkts[i] = desc;
}
return i;
}
static int tx_batch_pkts(struct xsk_socket_info *xsk,
const unsigned int nr, struct xdp_desc pkts[nr])
{
struct xsk_umem_info *umem = xsk->umem;
uint32_t tx_res;
uint32_t tx_idx = 0;
int i;
tx_res = xsk_ring_prod__reserve(&xsk->tx, nr, &tx_idx);
if (tx_res != nr) {
/* No more transmit slots, drop all packets. Normally AF_XDP
* code would try to run TX-completion CQ step to free up slots,
* but we don't want to introduce variability due to RT
* requirements. Other code make sure CQ is processed.
*/
for (i = 0; i < nr; i++) {
mem_free_umem_frame(&umem->mem, pkts[i].addr);
}
return 0;
}
for (i = 0; i < nr ; i++) {
struct xdp_desc *tx_desc;
tx_desc = xsk_ring_prod__tx_desc(&xsk->tx, tx_idx + i);
*tx_desc = pkts[i];
//xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->addr = pkt_addr;
//xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->len = 64;
xsk->outstanding_tx++;
}
xsk_ring_prod__submit(&xsk->tx, nr);
// Kick Tx
// sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
complete_tx(xsk);
// See if kicking Rx-side works
// recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, NULL);
return nr;
}
static bool process_packet(struct xsk_socket_info *xsk,
uint64_t addr, uint32_t len)
{
uint8_t *pkt = xsk_umem__get_data(xsk->umem->buffer, addr);
print_meta_info_via_btf(pkt, xsk);
//if (debug)
// printf("XXX addr:0x%lX pkt_ptr:0x%p\n", addr, pkt);
if (debug_pkt)
print_pkt_info(pkt, len);
/* Lesson#3: Write an IPv6 ICMP ECHO parser to send responses
*
* Some assumptions to make it easier:
* - No VLAN handling
* - Only if nexthdr is ICMP
* - Just return all data with MAC/IP swapped, and type set to
* ICMPV6_ECHO_REPLY
* - Recalculate the icmp checksum */
if (true) {
int ret;
uint32_t tx_idx = 0;
uint8_t tmp_mac[ETH_ALEN];
struct in6_addr tmp_ip;
struct ethhdr *eth = (struct ethhdr *) pkt;
struct ipv6hdr *ipv6 = (struct ipv6hdr *) (eth + 1);
struct icmp6hdr *icmp = (struct icmp6hdr *) (ipv6 + 1);
if (ntohs(eth->h_proto) != ETH_P_IPV6 ||
len < (sizeof(*eth) + sizeof(*ipv6) + sizeof(*icmp)) ||
ipv6->nexthdr != IPPROTO_ICMPV6 ||
icmp->icmp6_type != ICMPV6_ECHO_REQUEST)
return false;
memcpy(tmp_mac, eth->h_dest, ETH_ALEN);
memcpy(eth->h_dest, eth->h_source, ETH_ALEN);
memcpy(eth->h_source, tmp_mac, ETH_ALEN);
memcpy(&tmp_ip, &ipv6->saddr, sizeof(tmp_ip));
memcpy(&ipv6->saddr, &ipv6->daddr, sizeof(tmp_ip));
memcpy(&ipv6->daddr, &tmp_ip, sizeof(tmp_ip));
icmp->icmp6_type = ICMPV6_ECHO_REPLY;
csum_replace2(&icmp->icmp6_cksum,
htons(ICMPV6_ECHO_REQUEST << 8),
htons(ICMPV6_ECHO_REPLY << 8));
/* Here we sent the packet out of the receive port. Note that
* we allocate one entry and schedule it. Your design would be
* faster if you do batch processing/transmission */
ret = xsk_ring_prod__reserve(&xsk->tx, 1, &tx_idx);
if (ret != 1) {
/* No more transmit slots, drop the packet */
return false;
}
xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->addr = addr;
xsk_ring_prod__tx_desc(&xsk->tx, tx_idx)->len = len;
xsk_ring_prod__submit(&xsk->tx, 1);
xsk->outstanding_tx++;
xsk->stats.tx_bytes += len;
xsk->stats.tx_packets++;
return true;
}
return false;
}
void restock_receive_fill_queue(struct xsk_socket_info *xsk)
{
unsigned int i, stock_frames;
uint32_t idx_fq = 0;
int ret;
/* Limit refill size as it takes time */
int free_frames = mem_avail_umem_frames(&xsk->umem->mem);
int refill = (free_frames > FQ_REFILL_MAX) ? FQ_REFILL_MAX : free_frames;
__u64 start = gettime();
stock_frames = xsk_prod_nb_free(&xsk->fq, refill);
if (stock_frames > 0) {
ret = xsk_ring_prod__reserve(&xsk->fq, stock_frames, &idx_fq);
/* This should not happen, but just in case */
if (ret != stock_frames) {
printf("XXX %s() should not happen (%d vs %d)\n", __func__,
stock_frames, ret);
stock_frames = ret;
}
for (i = 0; i < stock_frames; i++)
*xsk_ring_prod__fill_addr(&xsk->fq, idx_fq++) =
mem_alloc_umem_frame(&xsk->umem->mem);
xsk_ring_prod__submit(&xsk->fq, stock_frames);
}
__u64 now = gettime();
if (debug && stock_frames > 1)
printf("XXX stock_frame:%d free_frames:%d cost of xsk_prod_nb_free() %llu ns\n",
stock_frames, free_frames, now - start);
}
static void handle_receive_packets(struct xsk_socket_info *xsk)
{
unsigned int rcvd, i;
uint32_t idx_rx = 0;
// FIXME: Needed when in NAPI busy_poll mode?
recvfrom(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, NULL);
rcvd = xsk_ring_cons__peek(&xsk->rx, RX_BATCH_SIZE, &idx_rx);
if (!rcvd)
return;
/* Process received packets */
for (i = 0; i < rcvd; i++) {
uint64_t addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr;
uint32_t len = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len;
pr_addr_info(__func__, addr, xsk->umem);
if (!process_packet(xsk, addr, len))
mem_free_umem_frame(&xsk->umem->mem, addr);
xsk->stats.rx_bytes += len;
}
xsk->stats.rx_packets += rcvd;
restock_receive_fill_queue(xsk);
xsk_ring_cons__release(&xsk->rx, rcvd);
/* Do we need to wake up the kernel for transmission */
complete_tx(xsk);
if (verbose && rcvd > 1)
printf("%s(): RX batch %d packets (i:%d)\n", __func__, rcvd, i);
}
static void rx_and_process(struct config *cfg,
struct xsk_container *xsks)
{
struct pollfd fds[MAX_AF_SOCKS] = { 0 };
int ret, n_fds, i;
// struct xsk_socket_info *xsk_socket = xsks->sockets[0]; // FIXME
n_fds = xsks->num;
for (i = 0; i < n_fds; i++) {
struct xsk_socket_info *xsk_info = xsks->sockets[i];
fds[i].fd = xsk_socket__fd(xsk_info->xsk);
fds[i].events = POLLIN;
}
while(!global_exit) {
if (cfg->xsk_wakeup_mode) {
/* poll will wait for events on file descriptors */
ret = poll(fds, n_fds, -1);
if (ret <= 0 || ret > 1)
continue;
}
for (i = 0; i < n_fds; i++) {
struct xsk_socket_info *xsk_info = xsks->sockets[i];
//printf("XXX i[%d] queue:%d xsk_info:%p \n",
// i, xsk_info->queue_id, xsk_info);
handle_receive_packets(xsk_info);
}
}
}
static void rx_avail_packets(struct xsk_container *xsks)
{
for (int i = 0; i < xsks->num; i++) {
struct xsk_socket_info *xsk_info = xsks->sockets[i];
handle_receive_packets(xsk_info);
}
}
/* Default interval in usec */
#define DEFAULT_INTERVAL 1000000
#define USEC_PER_SEC 1000000
#define NSEC_PER_SEC 1000000000
static inline void tsnorm(struct timespec *ts)
{
while (ts->tv_nsec >= NSEC_PER_SEC) {
ts->tv_nsec -= NSEC_PER_SEC;
ts->tv_sec++;
}
}
static inline uint64_t timespec2ns(struct timespec *ts)
{
return (uint64_t) ts->tv_sec * NANOSEC_PER_SEC + ts->tv_nsec;
}
static inline void ns2timespec(uint64_t ns, struct timespec *ts)
{
ts->tv_sec = ns / NANOSEC_PER_SEC;
ts->tv_nsec = ns % NANOSEC_PER_SEC;
}
static inline int64_t calcdiff(struct timespec t1, struct timespec t2)
{
int64_t diff;
diff = USEC_PER_SEC * (long long)((int) t1.tv_sec - (int) t2.tv_sec);
diff += ((int) t1.tv_nsec - (int) t2.tv_nsec) / 1000;
return diff;
}
static inline int64_t calcdiff_ns(struct timespec t1, struct timespec t2)
{
int64_t diff;
diff = NSEC_PER_SEC * (long long)((int) t1.tv_sec - (int) t2.tv_sec);
diff += ((int) t1.tv_nsec - (int) t2.tv_nsec);
return diff;
}
static void print_timespec(struct timespec *ts, char *msg)
{
printf("Time: %lu.%lu - %s\n", ts->tv_sec, ts->tv_nsec, msg);
}
struct wakeup_stat {
long min;
long max;
long curr;
long prev;
double avg;
unsigned long events;
};
/* Use-case: Accurate cyclic Tx and lazy RX-processing
*
* This processing loop is simulating a Time-Triggered schedule, where
* transmitting packets within a small time-window is the most
* important task. Picking up frames in RX-queue is less time
* critical, as the PCF synchronization packets will have been
* timestamped (rx_ktime) by XDP before they got enqueued.
*/
static void tx_cyclic_and_rx_process(struct config *cfg,
struct xsk_container *xsks)
{
struct timespec now, next, next_adj, interval, now_prev;
struct wakeup_stat stat = { .min = DEFAULT_INTERVAL, .max = -0xFFFF };
struct wakeup_stat stat_adj = { .min = DEFAULT_INTERVAL, .max = -0xFFFF };
struct xdp_desc tx_pkts[BATCH_PKTS_MAX];
int batch_nr = cfg->batch_pkts;
int tx_nr;
bool first = true;
int period = cfg->interval;
int timermode = TIMER_ABSTIME;
int clock = CLOCK_MONOTONIC;
// Choosing xsk id 0
struct xsk_socket_info *xsk = xsks->sockets[0];
/* Get packets for *first* iteration */
tx_nr = invent_tx_pkts(cfg, xsk->umem, batch_nr, tx_pkts);
interval.tv_sec = period / USEC_PER_SEC;
interval.tv_nsec = (period % USEC_PER_SEC) * 1000;
clock_gettime(clock, &now);
next = now;
next.tv_sec += interval.tv_sec;
next.tv_nsec += interval.tv_nsec;
tsnorm(&next);
next_adj = next; /* Not adjusted yet */
while (!global_exit) {
int64_t diff, diff2adj, diff_interval;
int64_t avg, avg2adj;
int err, n;
/* Wait for next period, but adjusted for measured inaccuracy */
err = clock_nanosleep(clock, timermode, &next_adj, NULL);
/* Took case MODE_CLOCK_NANOSLEEP from cyclictest */
if (err) {
if (err != EINTR)
fprintf(stderr, "clock_nanosleep failed."
" err:%d errno:%d\n", err, errno);
goto out;
}
/* Expecting to wakeup at "next" get systime "now" to check */
now_prev = now;
err = clock_gettime(clock, &now);
if (err) {
if (err != EINTR)
fprintf(stderr, "clock_getttime() failed."
" err:%d errno:%d\n", err, errno);
goto out;
}
/* How close is wakeup time to our actual target */
diff = calcdiff_ns(now, next); /* Positive num = wokeup after */
/* Exclude first measurement as no next_adj happened */
if (!first) {
if (diff < stat.min)
stat.min = diff;
if (diff > stat.max)
stat.max = diff;
}
first = false;
stat.avg += (double) diff;
stat.prev = stat.curr;
stat.curr = diff;
stat.events++;
avg = (stat.avg / stat.events);
/* Measure inaccuracy of clock_nanosleep */
diff2adj = calcdiff_ns(now, next_adj); /* Positive num = wokeup after */
stat_adj.avg += (double) diff2adj;
stat_adj.events++;
avg2adj = (stat_adj.avg / stat_adj.events);
// IDEA: Spin until exact time occurs (if diff negative)
/* Send batch of packets */
n = tx_batch_pkts(xsk, tx_nr, tx_pkts);
diff_interval = calcdiff_ns(now, now_prev);
if (verbose >=1 )
printf("TX pkts:%d event:%lu"
" inaccurate wakeup(nanosec) curr:%ld"
"(min:%ld max:%ld avg:%ld avg2adj:%ld)"
" variance(n-1):%ld interval-ns:%ld\n",
n, stat.events, stat.curr,
stat.min, stat.max, avg, avg2adj,
stat.curr - stat.prev,
diff_interval);
if (debug_time) {
print_timespec(&now, "now");
print_timespec(&next_adj, "next_adj");
print_timespec(&next, "next");
}
/* Calculate next time to wakeup */
next.tv_sec += interval.tv_sec;
next.tv_nsec += interval.tv_nsec;
tsnorm(&next);
/* Adjust for inaccuracy of clock_nanosleep wakeup */
uint64_t next_adj_ns = timespec2ns(&next);
next_adj_ns = next_adj_ns - avg2adj;
ns2timespec(next_adj_ns, &next_adj);
tsnorm(&next_adj);
/* Get packets for *next* iteration */
tx_nr = invent_tx_pkts(cfg, xsk->umem, batch_nr, tx_pkts);
/* Empty RX queues */
rx_avail_packets(xsks);
}
out:
/* Free umem frames */
for (int i = 0; i < tx_nr; i++) {
mem_free_umem_frame(&xsk->umem->mem, tx_pkts[i].addr);
}
}
static double calc_period(struct stats_record *r, struct stats_record *p)
{
double period_ = 0;
__u64 period = 0;
period = r->timestamp - p->timestamp;
if (period > 0)
period_ = ((double) period / NANOSEC_PER_SEC);
return period_;
}
static void stats_print(struct stats_record *stats_rec,
struct stats_record *stats_prev)
{
uint64_t packets, bytes;
double period;
double pps; /* packets per sec */
double bps; /* bits per sec */
char *fmt = "%-12s %'11lld pkts (%'10.0f pps)"
" %'11lld Kbytes (%'6.0f Mbits/s)"
" period:%f\n";
period = calc_period(stats_rec, stats_prev);
if (period == 0)
period = 1;
packets = stats_rec->rx_packets - stats_prev->rx_packets;
pps = packets / period;
bytes = stats_rec->rx_bytes - stats_prev->rx_bytes;
bps = (bytes * 8) / period / 1000000;
printf(fmt, "AF_XDP RX:", stats_rec->rx_packets, pps,
stats_rec->rx_bytes / 1000 , bps,
period);
packets = stats_rec->tx_packets - stats_prev->tx_packets;
pps = packets / period;
bytes = stats_rec->tx_bytes - stats_prev->tx_bytes;
bps = (bytes * 8) / period / 1000000;
printf(fmt, " TX:", stats_rec->tx_packets, pps,
stats_rec->tx_bytes / 1000 , bps,
period);
printf("\n");
}
static void *stats_poll(void *arg)
{
unsigned int interval = 2;
struct xsk_container *xsks = arg;
struct xsk_socket_info *xsk = xsks->sockets[0]; // FIXME
static struct stats_record previous_stats = { 0 };
previous_stats.timestamp = gettime();
/* Trick to pretty printf with thousands separators use %' */
setlocale(LC_NUMERIC, "en_US");
while (!global_exit) {
sleep(interval);
xsk->stats.timestamp = gettime();
stats_print(&xsk->stats, &previous_stats);
previous_stats = xsk->stats;
}
return NULL;
}
static void enter_xsks_into_map(int xsks_map, struct xsk_container *xsks)
{
int i;
if (xsks_map < 0) {
fprintf(stderr, "ERROR: no xsks map found: %s\n",
strerror(xsks_map));
exit(EXIT_FAILURE);
}
for (i = 0; i < xsks->num; i++) {
int fd = xsk_socket__fd(xsks->sockets[i]->xsk);
int key, ret;
key = i;
/* When entering XSK socket into map redirect have effect */
ret = bpf_map_update_elem(xsks_map, &key, &fd, 0);
if (ret) {
fprintf(stderr, "ERROR: bpf_map_update_elem %d\n", i);
exit(EXIT_FAILURE);
}
if (debug)
printf("%s() enable redir for xsks_map_fd:%d Key:%d fd:%d\n",
__func__, xsks_map, key, fd);
}
}
static void exit_application(int signal)
{
signal = signal;
global_exit = true;
}
int main(int argc, char **argv)
{
int ret, err;
int xsks_map_fd;
void *packet_buffer;
uint64_t packet_buffer_size;
struct rlimit rlim = {RLIM_INFINITY, RLIM_INFINITY};
struct config cfg = {
.ifindex = -1,
.do_unload = false,
.filename = "af_xdp_kern.o",
.progsec = "xdp_sock",
.xsk_wakeup_mode = true, /* Default, change via --spin */
.xsk_if_queue = -1,
.opt_tx_dmac = default_tx_dmac,
.opt_tx_smac = default_tx_smac,
.interval = DEFAULT_INTERVAL,
.batch_pkts = BATCH_PKTS_DEFAULT,
};
pthread_t stats_poll_thread;
struct xsk_umem_info *umem;
struct xsk_container xsks;
int queues_max, queues_set;
int total_nr_frames, nr_frames;
struct sched_param schedp;
int i;
/* Default to AF_XDP copy mode.
*
* It seems counter intuitive to not-use Zero-Copy mode, but there is an
* explaination. Our application don't consume EVERY packet, e.g
* letting netstack handle ARP/NDP packets via returning XDP_PASS in
* bpf-prog.
*
* XDP_PASS in Zero-Copy mode results in the kernel allocating a new
* memory page (and SKB) and copying over packet contents, before giving
* packet to netstack.
*
* For our Real-Time use-case, we want to avoid allocations more than
* cost of copying over packet data to our preallocated AF_XDP umem
* area.
*/
//cfg.xsk_bind_flags = XDP_COPY;
cfg.xsk_bind_flags = XDP_COPY | XDP_USE_NEED_WAKEUP;
struct bpf_object *bpf_obj = NULL;
struct bpf_map *map;
/* Global shutdown handler */
signal(SIGINT, exit_application);
/* Cmdline options can change progsec */
parse_cmdline_args(argc, argv, long_options, &cfg, __doc__);
/* Required option */
if (cfg.ifindex == -1) {
fprintf(stderr, "ERROR: Required option --dev missing\n\n");
usage(argv[0], __doc__, long_options, (argc == 1));
return EXIT_FAIL_OPTION;
}
libbpf_set_print(print_libbpf_log); /* set custom log handler */
/* Unload XDP program if requested */
if (cfg.do_unload)
return xdp_link_detach(cfg.ifindex, cfg.xdp_flags, 0);
/* Require loading custom BPF program */
if (cfg.filename[0] == 0) {
fprintf(stderr, "ERROR: must load custom BPF-prog\n");
exit(EXIT_FAILURE);
} else {
bpf_obj = load_bpf_and_xdp_attach(&cfg);
if (!bpf_obj) {
/* Error handling done in load_bpf_and_xdp_attach() */
exit(EXIT_FAILURE);
}
/* We also need to load the xsks_map */
map = bpf_object__find_map_by_name(bpf_obj, "xsks_map");
xsks_map_fd = bpf_map__fd(map);
if (xsks_map_fd < 0) {
fprintf(stderr, "ERROR: no xsks map found: %s\n",
strerror(xsks_map_fd));
exit(EXIT_FAILURE);
}
}
queues_max = ethtool_get_max_channels(cfg.ifname);
queues_set = ethtool_get_channels(cfg.ifname);
if (verbose || debug_meta)
printf("Interface: %s - queues max:%d set:%d\n",
cfg.ifname, queues_max, queues_set);
xsks.num = queues_set;
/* Allocate frames according to how many queues are handled */
nr_frames = NUM_FRAMES;
total_nr_frames = nr_frames * xsks.num;
if (verbose || debug_meta)
printf("For XSK queues:%d alloc total:%d frames (per-q:%d)\n",
xsks.num, total_nr_frames, nr_frames);
err = init_btf_info_via_bpf_object(bpf_obj);
if (err) {
fprintf(stderr, "ERROR(%d): Invalid BTF info: errno:%s\n",
err, strerror(errno));
return EXIT_FAILURE;
}
/* Allow unlimited locking of memory, so all memory needed for packet
* buffers can be locked.
*/
if (setrlimit(RLIMIT_MEMLOCK, &rlim)) {
fprintf(stderr, "ERROR: setrlimit(RLIMIT_MEMLOCK) \"%s\"\n",
strerror(errno));
exit(EXIT_FAILURE);
}
/* Allocate memory for total_nr_frames of the default XDP frame size */
packet_buffer_size = total_nr_frames * FRAME_SIZE;
if (posix_memalign(&packet_buffer,
getpagesize(), /* PAGE_SIZE aligned */
packet_buffer_size)) {
fprintf(stderr, "ERROR: Can't allocate buffer memory \"%s\"\n",
strerror(errno));
exit(EXIT_FAILURE);
}
/* Initialize shared packet_buffer for umem usage */
umem = configure_xsk_umem(packet_buffer, packet_buffer_size,
FRAME_SIZE, total_nr_frames);
if (umem == NULL) {
fprintf(stderr, "ERROR: Can't create umem \"%s\"\n",
strerror(errno));
exit(EXIT_FAILURE);
}
/* Generate packets to TX */
gen_base_pkt(&cfg, (uint8_t*)&base_pkt_data);
/* Open and configure the AF_XDP (xsk) socket(s) */
for (i = 0; i < xsks.num; i++) {
struct xsk_socket_info *xski;
xski = xsk_configure_socket(&cfg, umem, i, xsks_map_fd);
if (xski == NULL) {
fprintf(stderr, "ERROR(%d): Can't setup AF_XDP socket "
"\"%s\"\n", errno, strerror(errno));
exit(EXIT_FAILURE);
}
xsks.sockets[i] = xski;
if (xsk_populate_fill_ring(&xski->fq, umem, nr_frames / 2)) {
fprintf(stderr, "ERROR: Can't populate fill ring\n");
exit(EXIT_FAILURE);
}
}
enter_xsks_into_map(xsks_map_fd, &xsks);
/* Start thread to do statistics display */
if (0 && verbose) { // FIXME disabled as currently broken
ret = pthread_create(&stats_poll_thread, NULL,
stats_poll, &xsks);
if (ret) {
fprintf(stderr, "ERROR: Failed creating statistics thread "
"\"%s\"\n", strerror(errno));
exit(EXIT_FAILURE);
}
}
if (cfg.sched_prio) {
/* Setup sched priority: Have impact on wakeup accuracy */
memset(&schedp, 0, sizeof(schedp));
schedp.sched_priority = cfg.sched_prio;
err = sched_setscheduler(0, cfg.sched_policy, &schedp);
if (err) {
fprintf(stderr, "ERROR(%d): failed to set priority(%d): %s\n",
errno, cfg.sched_prio, strerror(errno));
if (errno != EPERM)
return EXIT_FAILURE;
}
if (debug)
printf("Setup RT prio %d - policy SCHED_FIFO(%d)\n ",
cfg.sched_prio, cfg.sched_policy);
}
/* Issue: At this point AF_XDP socket might not be ready e.g. for TX.
* It seems related with XDP attachment causing link down/up event for
* some drivers. Q: What is the right method/API that waits for link to
* be initilized correctly?
*
* This workaround keeps trying to send a single packet, and
* check return value seen from sendto() syscall, until it
* doesn't return an error.
*/
while ((err = tx_pkt(&cfg, xsks.sockets[0]))) {
fprintf(stderr, "WARN(%d): Failed to Tx pkt, will retry\n", err);
sleep(1);
}
/* Receive and count packets than drop them */
// rx_and_process(&cfg, &xsks);
/* Send packets cyclic */
tx_cyclic_and_rx_process(&cfg, &xsks);
/* Cleanup */
for (i = 0; i < xsks.num; i++)
xsk_socket__delete(xsks.sockets[i]->xsk);
xsk_umem__delete(umem->umem);
xdp_link_detach(cfg.ifindex, cfg.xdp_flags, 0);
return EXIT_OK;
}